1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
|
package org.opencv.test.features2d;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.Comparator;
import java.util.List;
import org.opencv.core.CvType;
import org.opencv.core.Mat;
import org.opencv.core.MatOfKeyPoint;
import org.opencv.core.Point;
import org.opencv.core.Scalar;
import org.opencv.core.KeyPoint;
import org.opencv.test.OpenCVTestCase;
import org.opencv.test.OpenCVTestRunner;
import org.opencv.imgproc.Imgproc;
import org.opencv.features2d.Feature2D;
public class SURFFeatureDetectorTest extends OpenCVTestCase {
Feature2D detector;
int matSize;
KeyPoint[] truth;
private Mat getMaskImg() {
Mat mask = new Mat(matSize, matSize, CvType.CV_8U, new Scalar(255));
Mat right = mask.submat(0, matSize, matSize / 2, matSize);
right.setTo(new Scalar(0));
return mask;
}
private Mat getTestImg() {
Mat cross = new Mat(matSize, matSize, CvType.CV_8U, new Scalar(255));
Imgproc.line(cross, new Point(20, matSize / 2), new Point(matSize - 21, matSize / 2), new Scalar(100), 2);
Imgproc.line(cross, new Point(matSize / 2, 20), new Point(matSize / 2, matSize - 21), new Scalar(100), 2);
return cross;
}
private void order(List<KeyPoint> points) {
Collections.sort(points, new Comparator<KeyPoint>() {
public int compare(KeyPoint p1, KeyPoint p2) {
if (p1.angle < p2.angle)
return -1;
if (p1.angle > p2.angle)
return 1;
return 0;
}
});
}
@Override
protected void setUp() throws Exception {
super.setUp();
detector = createClassInstance(XFEATURES2D+"SURF", DEFAULT_FACTORY, null, null);
matSize = 100;
truth = new KeyPoint[] {
new KeyPoint(55.775578f, 55.775578f, 16, 80.245735f, 8617.8633f, 0, -1),
new KeyPoint(44.224422f, 55.775578f, 16, 170.24574f, 8617.8633f, 0, -1),
new KeyPoint(44.224422f, 44.224422f, 16, 260.24573f, 8617.8633f, 0, -1),
new KeyPoint(55.775578f, 44.224422f, 16, 350.24573f, 8617.8633f, 0, -1)
};
}
public void testCreate() {
assertNotNull(detector);
}
public void testDetectListOfMatListOfListOfKeyPoint() {
setProperty(detector, "hessianThreshold", "double", 8000);
setProperty(detector, "nOctaves", "int", 3);
setProperty(detector, "nOctaveLayers", "int", 4);
setProperty(detector, "upright", "boolean", false);
List<MatOfKeyPoint> keypoints = new ArrayList<MatOfKeyPoint>();
Mat cross = getTestImg();
List<Mat> crosses = new ArrayList<Mat>(3);
crosses.add(cross);
crosses.add(cross);
crosses.add(cross);
detector.detect(crosses, keypoints);
assertEquals(3, keypoints.size());
for (MatOfKeyPoint mkp : keypoints) {
List<KeyPoint> lkp = mkp.toList();
order(lkp);
assertListKeyPointEquals(Arrays.asList(truth), lkp, EPS);
}
}
public void testDetectListOfMatListOfListOfKeyPointListOfMat() {
fail("Not yet implemented");
}
public void testDetectMatListOfKeyPoint() {
setProperty(detector, "hessianThreshold", "double", 8000);
setProperty(detector, "nOctaves", "int", 3);
setProperty(detector, "nOctaveLayers", "int", 4);
setProperty(detector, "upright", "boolean", false);
MatOfKeyPoint keypoints = new MatOfKeyPoint();
Mat cross = getTestImg();
detector.detect(cross, keypoints);
List<KeyPoint> lkp = keypoints.toList();
order(lkp);
assertListKeyPointEquals(Arrays.asList(truth), lkp, EPS);
}
public void testDetectMatListOfKeyPointMat() {
setProperty(detector, "hessianThreshold", "double", 8000);
setProperty(detector, "nOctaves", "int", 3);
setProperty(detector, "nOctaveLayers", "int", 4);
setProperty(detector, "upright", "boolean", false);
Mat img = getTestImg();
Mat mask = getMaskImg();
MatOfKeyPoint keypoints = new MatOfKeyPoint();
detector.detect(img, keypoints, mask);
List<KeyPoint> lkp = keypoints.toList();
order(lkp);
assertListKeyPointEquals(Arrays.asList(truth[1], truth[2]), lkp, EPS);
}
public void testEmpty() {
// assertFalse(detector.empty());
fail("Not yet implemented");
}
public void testRead() {
Mat cross = getTestImg();
MatOfKeyPoint keypoints1 = new MatOfKeyPoint();
detector.detect(cross, keypoints1);
String filename = OpenCVTestRunner.getTempFileName("yml");
writeFile(filename, "%YAML:1.0\n---\nhessianThreshold: 8000.\noctaves: 3\noctaveLayers: 4\nupright: 0\n");
detector.read(filename);
MatOfKeyPoint keypoints2 = new MatOfKeyPoint();
detector.detect(cross, keypoints2);
assertTrue(keypoints2.total() <= keypoints1.total());
}
public void testWrite() {
String filename = OpenCVTestRunner.getTempFileName("xml");
detector.write(filename);
// String truth = "<?xml version=\"1.0\"?>\n<opencv_storage>\n<name>Feature2D.SURF</name>\n<extended>0</extended>\n<hessianThreshold>100.</hessianThreshold>\n<nOctaveLayers>3</nOctaveLayers>\n<nOctaves>4</nOctaves>\n<upright>0</upright>\n</opencv_storage>\n";
String truth = "<?xml version=\"1.0\"?>\n<opencv_storage>\n</opencv_storage>\n";
assertEquals(truth, readFile(filename));
}
public void testWriteYml() {
String filename = OpenCVTestRunner.getTempFileName("yml");
detector.write(filename);
// String truth = "%YAML:1.0\n---\nname: \"Feature2D.SURF\"\nextended: 0\nhessianThreshold: 100.\nnOctaveLayers: 3\nnOctaves: 4\nupright: 0\n";
String truth = "%YAML:1.0\n---\n";
assertEquals(truth, readFile(filename));
}
}
|