File: test_gaussian_mix.py

package info (click to toggle)
opencv 3.2.0%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 238,480 kB
  • sloc: xml: 901,650; cpp: 703,419; lisp: 20,142; java: 17,843; python: 17,641; ansic: 603; cs: 601; sh: 516; perl: 494; makefile: 117
file content (60 lines) | stat: -rw-r--r-- 1,779 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
#!/usr/bin/env python

# Python 2/3 compatibility
from __future__ import print_function
import sys
PY3 = sys.version_info[0] == 3

if PY3:
    xrange = range

import numpy as np
from numpy import random
import cv2

def make_gaussians(cluster_n, img_size):
    points = []
    ref_distrs = []
    for i in xrange(cluster_n):
        mean = (0.1 + 0.8*random.rand(2)) * img_size
        a = (random.rand(2, 2)-0.5)*img_size*0.1
        cov = np.dot(a.T, a) + img_size*0.05*np.eye(2)
        n = 100 + random.randint(900)
        pts = random.multivariate_normal(mean, cov, n)
        points.append( pts )
        ref_distrs.append( (mean, cov) )
    points = np.float32( np.vstack(points) )
    return points, ref_distrs

from tests_common import NewOpenCVTests

class gaussian_mix_test(NewOpenCVTests):

    def test_gaussian_mix(self):

        np.random.seed(10)
        cluster_n = 5
        img_size = 512

        points, ref_distrs = make_gaussians(cluster_n, img_size)

        em = cv2.ml.EM_create()
        em.setClustersNumber(cluster_n)
        em.setCovarianceMatrixType(cv2.ml.EM_COV_MAT_GENERIC)
        em.trainEM(points)
        means = em.getMeans()
        covs = em.getCovs()  # Known bug: https://github.com/opencv/opencv/pull/4232
        found_distrs = zip(means, covs)

        matches_count = 0

        meanEps = 0.05
        covEps = 0.1

        for i in range(cluster_n):
            for j in range(cluster_n):
                if (cv2.norm(means[i] - ref_distrs[j][0], cv2.NORM_L2) / cv2.norm(ref_distrs[j][0], cv2.NORM_L2) < meanEps and
                    cv2.norm(covs[i] - ref_distrs[j][1], cv2.NORM_L2) / cv2.norm(ref_distrs[j][1], cv2.NORM_L2) < covEps):
                    matches_count += 1

        self.assertEqual(matches_count, cluster_n)