File: test_watershed.py

package info (click to toggle)
opencv 3.2.0%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 238,480 kB
  • sloc: xml: 901,650; cpp: 703,419; lisp: 20,142; java: 17,843; python: 17,641; ansic: 603; cs: 601; sh: 516; perl: 494; makefile: 117
file content (33 lines) | stat: -rw-r--r-- 974 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
#!/usr/bin/env python

'''
Watershed segmentation test
'''

# Python 2/3 compatibility
from __future__ import print_function

import numpy as np
import cv2

from tests_common import NewOpenCVTests

class watershed_test(NewOpenCVTests):
    def test_watershed(self):

        img = self.get_sample('cv/inpaint/orig.png')
        markers = self.get_sample('cv/watershed/wshed_exp.png', 0)
        refSegments = self.get_sample('cv/watershed/wshed_segments.png')

        if img is None or markers is None:
            self.assertEqual(0, 1, 'Missing test data')

        colors = np.int32( list(np.ndindex(3, 3, 3)) ) * 122
        cv2.watershed(img, np.int32(markers))
        segments = colors[np.maximum(markers, 0)]

        if refSegments is None:
            refSegments = segments.copy()
            cv2.imwrite(self.extraTestDataPath + '/cv/watershed/wshed_segments.png', refSegments)

        self.assertLess(cv2.norm(segments - refSegments, cv2.NORM_L1) / 255.0, 50)