1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
|
/*//////////////////////////////////////////////////////////////////////////////////////
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
// This is a implementation of the Logistic Regression algorithm in C++ in OpenCV.
// AUTHOR:
// Rahul Kavi rahulkavi[at]live[at]com
//
// contains a subset of data from the popular Iris Dataset (taken from
// "http://archive.ics.uci.edu/ml/datasets/Iris")
// # You are free to use, change, or redistribute the code in any way you wish for
// # non-commercial purposes, but please maintain the name of the original author.
// # This code comes with no warranty of any kind.
// #
// # You are free to use, change, or redistribute the code in any way you wish for
// # non-commercial purposes, but please maintain the name of the original author.
// # This code comes with no warranty of any kind.
// # Logistic Regression ALGORITHM
// License Agreement
// For Open Source Computer Vision Library
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2008-2011, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.*/
#include <iostream>
#include <opencv2/core.hpp>
#include <opencv2/ml.hpp>
#include <opencv2/highgui.hpp>
using namespace std;
using namespace cv;
using namespace cv::ml;
static void showImage(const Mat &data, int columns, const String &name)
{
Mat bigImage;
for(int i = 0; i < data.rows; ++i)
{
bigImage.push_back(data.row(i).reshape(0, columns));
}
imshow(name, bigImage.t());
}
static float calculateAccuracyPercent(const Mat &original, const Mat &predicted)
{
return 100 * (float)countNonZero(original == predicted) / predicted.rows;
}
int main()
{
const String filename = "../data/data01.xml";
cout << "**********************************************************************" << endl;
cout << filename
<< " contains digits 0 and 1 of 20 samples each, collected on an Android device" << endl;
cout << "Each of the collected images are of size 28 x 28 re-arranged to 1 x 784 matrix"
<< endl;
cout << "**********************************************************************" << endl;
Mat data, labels;
{
cout << "loading the dataset...";
FileStorage f;
if(f.open(filename, FileStorage::READ))
{
f["datamat"] >> data;
f["labelsmat"] >> labels;
f.release();
}
else
{
cerr << "file can not be opened: " << filename << endl;
return 1;
}
data.convertTo(data, CV_32F);
labels.convertTo(labels, CV_32F);
cout << "read " << data.rows << " rows of data" << endl;
}
Mat data_train, data_test;
Mat labels_train, labels_test;
for(int i = 0; i < data.rows; i++)
{
if(i % 2 == 0)
{
data_train.push_back(data.row(i));
labels_train.push_back(labels.row(i));
}
else
{
data_test.push_back(data.row(i));
labels_test.push_back(labels.row(i));
}
}
cout << "training/testing samples count: " << data_train.rows << "/" << data_test.rows << endl;
// display sample image
showImage(data_train, 28, "train data");
showImage(data_test, 28, "test data");
// simple case with batch gradient
cout << "training...";
//! [init]
Ptr<LogisticRegression> lr1 = LogisticRegression::create();
lr1->setLearningRate(0.001);
lr1->setIterations(10);
lr1->setRegularization(LogisticRegression::REG_L2);
lr1->setTrainMethod(LogisticRegression::BATCH);
lr1->setMiniBatchSize(1);
//! [init]
lr1->train(data_train, ROW_SAMPLE, labels_train);
cout << "done!" << endl;
cout << "predicting...";
Mat responses;
lr1->predict(data_test, responses);
cout << "done!" << endl;
// show prediction report
cout << "original vs predicted:" << endl;
labels_test.convertTo(labels_test, CV_32S);
cout << labels_test.t() << endl;
cout << responses.t() << endl;
cout << "accuracy: " << calculateAccuracyPercent(labels_test, responses) << "%" << endl;
// save the classfier
const String saveFilename = "NewLR_Trained.xml";
cout << "saving the classifier to " << saveFilename << endl;
lr1->save(saveFilename);
// load the classifier onto new object
cout << "loading a new classifier from " << saveFilename << endl;
Ptr<LogisticRegression> lr2 = StatModel::load<LogisticRegression>(saveFilename);
// predict using loaded classifier
cout << "predicting the dataset using the loaded classfier...";
Mat responses2;
lr2->predict(data_test, responses2);
cout << "done!" << endl;
// calculate accuracy
cout << labels_test.t() << endl;
cout << responses2.t() << endl;
cout << "accuracy: " << calculateAccuracyPercent(labels_test, responses2) << "%" << endl;
waitKey(0);
return 0;
}
|