File: transformations.cpp

package info (click to toggle)
opencv 3.2.0%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 238,480 kB
  • sloc: xml: 901,650; cpp: 703,419; lisp: 20,142; java: 17,843; python: 17,641; ansic: 603; cs: 601; sh: 516; perl: 494; makefile: 117
file content (112 lines) | stat: -rw-r--r-- 3,314 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
/**
 * @file transformations.cpp
 * @brief Visualizing cloud in different positions, coordinate frames, camera frustums
 * @author Ozan Cagri Tonkal
 */

#include <opencv2/viz.hpp>
#include <iostream>
#include <fstream>

using namespace cv;
using namespace std;

/**
 * @function help
 * @brief Display instructions to use this tutorial program
 */
static void help()
{
    cout
    << "--------------------------------------------------------------------------"   << endl
    << "This program shows how to use makeTransformToGlobal() to compute required pose,"
    << "how to use makeCameraPose and Viz3d::setViewerPose. You can observe the scene "
    << "from camera point of view (C) or global point of view (G)"                    << endl
    << "Usage:"                                                                       << endl
    << "./transformations [ G | C ]"                                                 << endl
    << endl;
}

/**
 * @function cvcloud_load
 * @brief load bunny.ply
 */
static Mat cvcloud_load()
{
    Mat cloud(1, 1889, CV_32FC3);
    ifstream ifs("bunny.ply");

    string str;
    for(size_t i = 0; i < 12; ++i)
        getline(ifs, str);

    Point3f* data = cloud.ptr<cv::Point3f>();
    float dummy1, dummy2;
    for(size_t i = 0; i < 1889; ++i)
        ifs >> data[i].x >> data[i].y >> data[i].z >> dummy1 >> dummy2;

    cloud *= 5.0f;
    return cloud;
}

/**
 * @function main
 */
int main(int argn, char **argv)
{
    help();

    if (argn < 2)
    {
        cout << "Missing arguments." << endl;
        return 1;
    }

    bool camera_pov = (argv[1][0] == 'C');

    /// Create a window
    viz::Viz3d myWindow("Coordinate Frame");

    /// Add coordinate axes
    myWindow.showWidget("Coordinate Widget", viz::WCoordinateSystem());

    /// Let's assume camera has the following properties
    Vec3f cam_pos(3.0f,3.0f,3.0f), cam_focal_point(3.0f,3.0f,2.0f), cam_y_dir(-1.0f,0.0f,0.0f);

    /// We can get the pose of the cam using makeCameraPose
    Affine3f cam_pose = viz::makeCameraPose(cam_pos, cam_focal_point, cam_y_dir);

    /// We can get the transformation matrix from camera coordinate system to global using
    /// - makeTransformToGlobal. We need the axes of the camera
    Affine3f transform = viz::makeTransformToGlobal(Vec3f(0.0f,-1.0f,0.0f), Vec3f(-1.0f,0.0f,0.0f), Vec3f(0.0f,0.0f,-1.0f), cam_pos);

    /// Create a cloud widget.
    Mat bunny_cloud = cvcloud_load();
    viz::WCloud cloud_widget(bunny_cloud, viz::Color::green());

    /// Pose of the widget in camera frame
    Affine3f cloud_pose = Affine3f().translate(Vec3f(0.0f,0.0f,3.0f));
    /// Pose of the widget in global frame
    Affine3f cloud_pose_global = transform * cloud_pose;

    /// Visualize camera frame
    if (!camera_pov)
    {
        viz::WCameraPosition cpw(0.5); // Coordinate axes
        viz::WCameraPosition cpw_frustum(Vec2f(0.889484, 0.523599)); // Camera frustum
        myWindow.showWidget("CPW", cpw, cam_pose);
        myWindow.showWidget("CPW_FRUSTUM", cpw_frustum, cam_pose);
    }

    /// Visualize widget
    myWindow.showWidget("bunny", cloud_widget, cloud_pose_global);

    /// Set the viewer pose to that of camera
    if (camera_pov)
        myWindow.setViewerPose(cam_pose);

    /// Start event loop.
    myWindow.spin();

    return 0;
}