File: nvidia_optical_flow.cpp

package info (click to toggle)
opencv 4.10.0%2Bdfsg-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 282,092 kB
  • sloc: cpp: 1,178,079; xml: 682,621; python: 49,092; lisp: 31,150; java: 25,469; ansic: 11,039; javascript: 6,085; sh: 1,214; cs: 601; perl: 494; objc: 210; makefile: 173
file content (337 lines) | stat: -rw-r--r-- 11,711 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
#include <unordered_map>
#include <iostream>
#include <fstream>
#include <iomanip>
#include <iterator>

#include "opencv2/core.hpp"
#include "opencv2/core/utility.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/cudaoptflow.hpp"
#include "opencv2/cudaarithm.hpp"
#include "opencv2/video/tracking.hpp"

using namespace cv;
using namespace cv::cuda;

//this function is taken from opencv/samples/gpu/optical_flow.cpp
inline bool isFlowCorrect(Point2f u)
{
    return !cvIsNaN(u.x) && !cvIsNaN(u.y) && fabs(u.x) < 1e9 && fabs(u.y) < 1e9;
}

//this function is taken from opencv/samples/gpu/optical_flow.cpp
static Vec3b computeColor(float fx, float fy)
{
    static bool first = true;

    // relative lengths of color transitions:
    // these are chosen based on perceptual similarity
    // (e.g. one can distinguish more shades between red and yellow
    //  than between yellow and green)
    const int RY = 15;
    const int YG = 6;
    const int GC = 4;
    const int CB = 11;
    const int BM = 13;
    const int MR = 6;
    const int NCOLS = RY + YG + GC + CB + BM + MR;
    static Vec3i colorWheel[NCOLS];

    if (first)
    {
        int k = 0;

        for (int i = 0; i < RY; ++i, ++k)
            colorWheel[k] = Vec3i(255, 255 * i / RY, 0);

        for (int i = 0; i < YG; ++i, ++k)
            colorWheel[k] = Vec3i(255 - 255 * i / YG, 255, 0);

        for (int i = 0; i < GC; ++i, ++k)
            colorWheel[k] = Vec3i(0, 255, 255 * i / GC);

        for (int i = 0; i < CB; ++i, ++k)
            colorWheel[k] = Vec3i(0, 255 - 255 * i / CB, 255);

        for (int i = 0; i < BM; ++i, ++k)
            colorWheel[k] = Vec3i(255 * i / BM, 0, 255);

        for (int i = 0; i < MR; ++i, ++k)
            colorWheel[k] = Vec3i(255, 0, 255 - 255 * i / MR);

        first = false;
    }

    const float rad = sqrt(fx * fx + fy * fy);
    const float a = atan2(-fy, -fx) / (float)CV_PI;

    const float fk = (a + 1.0f) / 2.0f * (NCOLS - 1);
    const int k0 = static_cast<int>(fk);
    const int k1 = (k0 + 1) % NCOLS;
    const float f = fk - k0;

    Vec3b pix;

    for (int b = 0; b < 3; b++)
    {
        const float col0 = colorWheel[k0][b] / 255.0f;
        const float col1 = colorWheel[k1][b] / 255.0f;

        float col = (1 - f) * col0 + f * col1;

        if (rad <= 1)
            col = 1 - rad * (1 - col); // increase saturation with radius
        else
            col *= .75; // out of range

        pix[2 - b] = static_cast<uchar>(255.0 * col);
    }

    return pix;
}

//this function is taken from opencv/samples/gpu/optical_flow.cpp
static void drawOpticalFlow(const Mat_<float>& flowx, const Mat_<float>& flowy
    , Mat& dst, float maxmotion = -1)
{
    dst.create(flowx.size(), CV_8UC3);
    dst.setTo(Scalar::all(0));

    // determine motion range:
    float maxrad = maxmotion;

    if (maxmotion <= 0)
    {
        maxrad = 1;
        for (int y = 0; y < flowx.rows; ++y)
        {
            for (int x = 0; x < flowx.cols; ++x)
            {
                Point2f u(flowx(y, x), flowy(y, x));

                if (!isFlowCorrect(u))
                    continue;

                maxrad = max(maxrad, sqrt(u.x * u.x + u.y * u.y));
            }
        }
    }

    for (int y = 0; y < flowx.rows; ++y)
    {
        for (int x = 0; x < flowx.cols; ++x)
        {
            Point2f u(flowx(y, x), flowy(y, x));

            if (isFlowCorrect(u))
                dst.at<Vec3b>(y, x) = computeColor(u.x / maxrad, u.y / maxrad);
        }
    }
}

/*
ROI config file format.
numrois 3
roi0 640 96 1152 192
roi1 640 64 896 864
roi2 640 960 256 32
*/
bool parseROI(std::string ROIFileName, std::vector<Rect>& roiData)
{
    std::string str;
    uint32_t nRois = 0;
    std::ifstream hRoiFile;
    hRoiFile.open(ROIFileName, std::ios::in);

    if (hRoiFile.is_open())
    {
        while (std::getline(hRoiFile, str))
        {
            std::istringstream iss(str);
            std::vector<std::string> tokens{ std::istream_iterator<std::string>{iss},
                std::istream_iterator<std::string>{} };

            if (tokens.size() == 0) continue; // if empty line, coninue

            transform(tokens[0].begin(), tokens[0].end(), tokens[0].begin(), ::tolower);
            if (tokens[0] == "numrois")
            {
                nRois = atoi(tokens[1].data());
            }
            else if (tokens[0].rfind("roi", 0) == 0)
            {
                cv::Rect roi;
                roi.x = atoi(tokens[1].data());
                roi.y = atoi(tokens[2].data());
                roi.width = atoi(tokens[3].data());
                roi.height = atoi(tokens[4].data());
                roiData.push_back(roi);
            }
            else if (tokens[0].rfind("#", 0) == 0)
            {
                continue;
            }
            else
            {
                std::cout << "Unidentified keyword in roi config file " << tokens[0] << std::endl;
                hRoiFile.close();
                return false;
            }
        }
    }
    else
    {
        std::cout << "Unable to open ROI file " << std::endl;
        return false;
    }
    if (nRois != roiData.size())
    {
        std::cout << "NumRois(" << nRois << ")and specified roi rects (" << roiData.size() << ")are not matching " << std::endl;
        hRoiFile.close();
        return false;
    }
    hRoiFile.close();
    return true;
}

int main(int argc, char **argv)
{
    std::unordered_map<std::string, NvidiaOpticalFlow_2_0::NVIDIA_OF_PERF_LEVEL> presetMap = {
        { "slow", NvidiaOpticalFlow_2_0::NVIDIA_OF_PERF_LEVEL::NV_OF_PERF_LEVEL_SLOW },
        { "medium", NvidiaOpticalFlow_2_0::NVIDIA_OF_PERF_LEVEL::NV_OF_PERF_LEVEL_MEDIUM },
        { "fast", NvidiaOpticalFlow_2_0::NVIDIA_OF_PERF_LEVEL::NV_OF_PERF_LEVEL_FAST } };

    std::unordered_map<int, NvidiaOpticalFlow_2_0::NVIDIA_OF_OUTPUT_VECTOR_GRID_SIZE> outputGridSize = {
        { 1, NvidiaOpticalFlow_2_0::NVIDIA_OF_OUTPUT_VECTOR_GRID_SIZE::NV_OF_OUTPUT_VECTOR_GRID_SIZE_1 },
        { 2, NvidiaOpticalFlow_2_0::NVIDIA_OF_OUTPUT_VECTOR_GRID_SIZE::NV_OF_OUTPUT_VECTOR_GRID_SIZE_2 },
        { 4, NvidiaOpticalFlow_2_0::NVIDIA_OF_OUTPUT_VECTOR_GRID_SIZE::NV_OF_OUTPUT_VECTOR_GRID_SIZE_4 } };

    std::unordered_map<int, NvidiaOpticalFlow_2_0::NVIDIA_OF_HINT_VECTOR_GRID_SIZE> hintGridSize = {
        { 1, NvidiaOpticalFlow_2_0::NVIDIA_OF_HINT_VECTOR_GRID_SIZE::NV_OF_HINT_VECTOR_GRID_SIZE_1 },
        { 2, NvidiaOpticalFlow_2_0::NVIDIA_OF_HINT_VECTOR_GRID_SIZE::NV_OF_HINT_VECTOR_GRID_SIZE_2 },
        { 4, NvidiaOpticalFlow_2_0::NVIDIA_OF_HINT_VECTOR_GRID_SIZE::NV_OF_HINT_VECTOR_GRID_SIZE_4 },
        { 8, NvidiaOpticalFlow_2_0::NVIDIA_OF_HINT_VECTOR_GRID_SIZE::NV_OF_HINT_VECTOR_GRID_SIZE_8 } };

    try
    {
        CommandLineParser cmd(argc, argv,
            "{ l left   | ../data/basketball1.png | specify left image }"
            "{ r right  | ../data/basketball2.png | specify right image }"
            "{ g gpuid  | 0 | cuda device index}"
            "{ p preset | slow | perf preset for OF algo [ options : slow, medium, fast ]}"
            "{ og outputGridSize | 1 | Output grid size of OF vector [ options : 1, 2, 4 ]}"
            "{ hg hintGridSize | 1 | Hint grid size of OF vector [ options : 1, 2, 4, 8 ]}"
            "{ o output | OpenCVNvOF.flo | output flow vector file in middlebury format}"
            "{ rc roiConfigFile | | Region of Interest config file }"
            "{ th enableTemporalHints | false | Enable temporal hints}"
            "{ eh enableExternalHints | false | Enable external hints}"
            "{ cb enableCostBuffer | false | Enable output cost buffer}"
            "{ h help   | | print help message }");

        cmd.about("Nvidia's optical flow sample.");
        if (cmd.has("help") || !cmd.check())
        {
            cmd.printMessage();
            cmd.printErrors();
            return 0;
        }

        std::string pathL = cmd.get<std::string>("left");
        std::string pathR = cmd.get<std::string>("right");
        std::string preset = cmd.get<std::string>("preset");
        std::string output = cmd.get<std::string>("output");
        std::string roiConfiFile = cmd.get<std::string>("roiConfigFile");
        bool enableExternalHints = cmd.get<bool>("enableExternalHints");
        bool enableTemporalHints = cmd.get<bool>("enableTemporalHints");
        bool enableCostBuffer = cmd.get<bool>("enableCostBuffer");
        int gpuId = cmd.get<int>("gpuid");
        int outputBufferGridSize = cmd.get<int>("outputGridSize");
        int hintBufferGridSize = cmd.get<int>("hintGridSize");

        if (pathL.empty()) std::cout << "Specify left image path" << std::endl;
        if (pathR.empty()) std::cout << "Specify right image path" << std::endl;
        if (preset.empty()) std::cout << "Specify perf preset for OpticalFlow algo" << std::endl;
        if (pathL.empty() || pathR.empty()) return 0;

        auto p = presetMap.find(preset);
        if (p == presetMap.end())
        {
            std::cout << "Invalid preset level : " << preset << std::endl;
            return 0;
        }
        NvidiaOpticalFlow_2_0::NVIDIA_OF_PERF_LEVEL perfPreset = p->second;

        auto o = outputGridSize.find(outputBufferGridSize);
        if (o == outputGridSize.end())
        {
            std::cout << "Invalid output grid size: " << outputBufferGridSize << std::endl;
            return 0;
        }
        NvidiaOpticalFlow_2_0::NVIDIA_OF_OUTPUT_VECTOR_GRID_SIZE outBufGridSize = o->second;

        NvidiaOpticalFlow_2_0::NVIDIA_OF_HINT_VECTOR_GRID_SIZE hintBufGridSize =
            NvidiaOpticalFlow_2_0::NV_OF_HINT_VECTOR_GRID_SIZE_UNDEFINED;
        if (enableExternalHints)
        {
            auto h = hintGridSize.find(hintBufferGridSize);
            if (h == hintGridSize.end())
            {
                std::cout << "Invalid hint grid size: " << hintBufferGridSize << std::endl;
                return 0;
            }
            hintBufGridSize = h->second;
        }

        std::vector<Rect> roiData;

        if (!roiConfiFile.empty())
        {
            if (!parseROI(roiConfiFile, roiData))
            {
                std::cout << "Wrong Region of Interest config file, proceeding without ROI" << std::endl;
            }
        }

        Mat frameL = imread(pathL, IMREAD_GRAYSCALE);
        Mat frameR = imread(pathR, IMREAD_GRAYSCALE);
        if (frameL.empty()) std::cout << "Can't open '" << pathL << "'" << std::endl;
        if (frameR.empty()) std::cout << "Can't open '" << pathR << "'" << std::endl;
        if (frameL.empty() || frameR.empty()) return -1;

        Ptr<NvidiaOpticalFlow_2_0> nvof = NvidiaOpticalFlow_2_0::create(
            frameL.size(), roiData, perfPreset, outBufGridSize, hintBufGridSize,
            enableTemporalHints, enableExternalHints, enableCostBuffer, gpuId);

        Mat flowx, flowy, flowxy, floatFlow, image;

        nvof->calc(frameL, frameR, flowxy);

        nvof->convertToFloat(flowxy, floatFlow);

        if (!output.empty())
        {
            if (!writeOpticalFlow(output, floatFlow))
                std::cout << "Failed to save Flow Vector" << std::endl;
            else
                std::cout << "Flow vector saved as '" << output << "'" << std::endl;
        }

        Mat planes[] = { flowx, flowy };
        split(floatFlow, planes);
        flowx = planes[0]; flowy = planes[1];

        drawOpticalFlow(flowx, flowy, image, 10);

        imshow("Colorize image", image);
        waitKey(0);
        nvof->collectGarbage();
    }
    catch (const std::exception &ex)
    {
        std::cout << ex.what() << std::endl;
        return 1;
    }
    return 0;
}