1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
|
#include <unordered_map>
#include <iostream>
#include <fstream>
#include <iomanip>
#include <iterator>
#include "opencv2/core.hpp"
#include "opencv2/core/utility.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/cudaoptflow.hpp"
#include "opencv2/cudaarithm.hpp"
#include "opencv2/video/tracking.hpp"
using namespace cv;
using namespace cv::cuda;
//this function is taken from opencv/samples/gpu/optical_flow.cpp
inline bool isFlowCorrect(Point2f u)
{
return !cvIsNaN(u.x) && !cvIsNaN(u.y) && fabs(u.x) < 1e9 && fabs(u.y) < 1e9;
}
//this function is taken from opencv/samples/gpu/optical_flow.cpp
static Vec3b computeColor(float fx, float fy)
{
static bool first = true;
// relative lengths of color transitions:
// these are chosen based on perceptual similarity
// (e.g. one can distinguish more shades between red and yellow
// than between yellow and green)
const int RY = 15;
const int YG = 6;
const int GC = 4;
const int CB = 11;
const int BM = 13;
const int MR = 6;
const int NCOLS = RY + YG + GC + CB + BM + MR;
static Vec3i colorWheel[NCOLS];
if (first)
{
int k = 0;
for (int i = 0; i < RY; ++i, ++k)
colorWheel[k] = Vec3i(255, 255 * i / RY, 0);
for (int i = 0; i < YG; ++i, ++k)
colorWheel[k] = Vec3i(255 - 255 * i / YG, 255, 0);
for (int i = 0; i < GC; ++i, ++k)
colorWheel[k] = Vec3i(0, 255, 255 * i / GC);
for (int i = 0; i < CB; ++i, ++k)
colorWheel[k] = Vec3i(0, 255 - 255 * i / CB, 255);
for (int i = 0; i < BM; ++i, ++k)
colorWheel[k] = Vec3i(255 * i / BM, 0, 255);
for (int i = 0; i < MR; ++i, ++k)
colorWheel[k] = Vec3i(255, 0, 255 - 255 * i / MR);
first = false;
}
const float rad = sqrt(fx * fx + fy * fy);
const float a = atan2(-fy, -fx) / (float)CV_PI;
const float fk = (a + 1.0f) / 2.0f * (NCOLS - 1);
const int k0 = static_cast<int>(fk);
const int k1 = (k0 + 1) % NCOLS;
const float f = fk - k0;
Vec3b pix;
for (int b = 0; b < 3; b++)
{
const float col0 = colorWheel[k0][b] / 255.0f;
const float col1 = colorWheel[k1][b] / 255.0f;
float col = (1 - f) * col0 + f * col1;
if (rad <= 1)
col = 1 - rad * (1 - col); // increase saturation with radius
else
col *= .75; // out of range
pix[2 - b] = static_cast<uchar>(255.0 * col);
}
return pix;
}
//this function is taken from opencv/samples/gpu/optical_flow.cpp
static void drawOpticalFlow(const Mat_<float>& flowx, const Mat_<float>& flowy
, Mat& dst, float maxmotion = -1)
{
dst.create(flowx.size(), CV_8UC3);
dst.setTo(Scalar::all(0));
// determine motion range:
float maxrad = maxmotion;
if (maxmotion <= 0)
{
maxrad = 1;
for (int y = 0; y < flowx.rows; ++y)
{
for (int x = 0; x < flowx.cols; ++x)
{
Point2f u(flowx(y, x), flowy(y, x));
if (!isFlowCorrect(u))
continue;
maxrad = max(maxrad, sqrt(u.x * u.x + u.y * u.y));
}
}
}
for (int y = 0; y < flowx.rows; ++y)
{
for (int x = 0; x < flowx.cols; ++x)
{
Point2f u(flowx(y, x), flowy(y, x));
if (isFlowCorrect(u))
dst.at<Vec3b>(y, x) = computeColor(u.x / maxrad, u.y / maxrad);
}
}
}
/*
ROI config file format.
numrois 3
roi0 640 96 1152 192
roi1 640 64 896 864
roi2 640 960 256 32
*/
bool parseROI(std::string ROIFileName, std::vector<Rect>& roiData)
{
std::string str;
uint32_t nRois = 0;
std::ifstream hRoiFile;
hRoiFile.open(ROIFileName, std::ios::in);
if (hRoiFile.is_open())
{
while (std::getline(hRoiFile, str))
{
std::istringstream iss(str);
std::vector<std::string> tokens{ std::istream_iterator<std::string>{iss},
std::istream_iterator<std::string>{} };
if (tokens.size() == 0) continue; // if empty line, coninue
transform(tokens[0].begin(), tokens[0].end(), tokens[0].begin(), ::tolower);
if (tokens[0] == "numrois")
{
nRois = atoi(tokens[1].data());
}
else if (tokens[0].rfind("roi", 0) == 0)
{
cv::Rect roi;
roi.x = atoi(tokens[1].data());
roi.y = atoi(tokens[2].data());
roi.width = atoi(tokens[3].data());
roi.height = atoi(tokens[4].data());
roiData.push_back(roi);
}
else if (tokens[0].rfind("#", 0) == 0)
{
continue;
}
else
{
std::cout << "Unidentified keyword in roi config file " << tokens[0] << std::endl;
hRoiFile.close();
return false;
}
}
}
else
{
std::cout << "Unable to open ROI file " << std::endl;
return false;
}
if (nRois != roiData.size())
{
std::cout << "NumRois(" << nRois << ")and specified roi rects (" << roiData.size() << ")are not matching " << std::endl;
hRoiFile.close();
return false;
}
hRoiFile.close();
return true;
}
int main(int argc, char **argv)
{
std::unordered_map<std::string, NvidiaOpticalFlow_2_0::NVIDIA_OF_PERF_LEVEL> presetMap = {
{ "slow", NvidiaOpticalFlow_2_0::NVIDIA_OF_PERF_LEVEL::NV_OF_PERF_LEVEL_SLOW },
{ "medium", NvidiaOpticalFlow_2_0::NVIDIA_OF_PERF_LEVEL::NV_OF_PERF_LEVEL_MEDIUM },
{ "fast", NvidiaOpticalFlow_2_0::NVIDIA_OF_PERF_LEVEL::NV_OF_PERF_LEVEL_FAST } };
std::unordered_map<int, NvidiaOpticalFlow_2_0::NVIDIA_OF_OUTPUT_VECTOR_GRID_SIZE> outputGridSize = {
{ 1, NvidiaOpticalFlow_2_0::NVIDIA_OF_OUTPUT_VECTOR_GRID_SIZE::NV_OF_OUTPUT_VECTOR_GRID_SIZE_1 },
{ 2, NvidiaOpticalFlow_2_0::NVIDIA_OF_OUTPUT_VECTOR_GRID_SIZE::NV_OF_OUTPUT_VECTOR_GRID_SIZE_2 },
{ 4, NvidiaOpticalFlow_2_0::NVIDIA_OF_OUTPUT_VECTOR_GRID_SIZE::NV_OF_OUTPUT_VECTOR_GRID_SIZE_4 } };
std::unordered_map<int, NvidiaOpticalFlow_2_0::NVIDIA_OF_HINT_VECTOR_GRID_SIZE> hintGridSize = {
{ 1, NvidiaOpticalFlow_2_0::NVIDIA_OF_HINT_VECTOR_GRID_SIZE::NV_OF_HINT_VECTOR_GRID_SIZE_1 },
{ 2, NvidiaOpticalFlow_2_0::NVIDIA_OF_HINT_VECTOR_GRID_SIZE::NV_OF_HINT_VECTOR_GRID_SIZE_2 },
{ 4, NvidiaOpticalFlow_2_0::NVIDIA_OF_HINT_VECTOR_GRID_SIZE::NV_OF_HINT_VECTOR_GRID_SIZE_4 },
{ 8, NvidiaOpticalFlow_2_0::NVIDIA_OF_HINT_VECTOR_GRID_SIZE::NV_OF_HINT_VECTOR_GRID_SIZE_8 } };
try
{
CommandLineParser cmd(argc, argv,
"{ l left | ../data/basketball1.png | specify left image }"
"{ r right | ../data/basketball2.png | specify right image }"
"{ g gpuid | 0 | cuda device index}"
"{ p preset | slow | perf preset for OF algo [ options : slow, medium, fast ]}"
"{ og outputGridSize | 1 | Output grid size of OF vector [ options : 1, 2, 4 ]}"
"{ hg hintGridSize | 1 | Hint grid size of OF vector [ options : 1, 2, 4, 8 ]}"
"{ o output | OpenCVNvOF.flo | output flow vector file in middlebury format}"
"{ rc roiConfigFile | | Region of Interest config file }"
"{ th enableTemporalHints | false | Enable temporal hints}"
"{ eh enableExternalHints | false | Enable external hints}"
"{ cb enableCostBuffer | false | Enable output cost buffer}"
"{ h help | | print help message }");
cmd.about("Nvidia's optical flow sample.");
if (cmd.has("help") || !cmd.check())
{
cmd.printMessage();
cmd.printErrors();
return 0;
}
std::string pathL = cmd.get<std::string>("left");
std::string pathR = cmd.get<std::string>("right");
std::string preset = cmd.get<std::string>("preset");
std::string output = cmd.get<std::string>("output");
std::string roiConfiFile = cmd.get<std::string>("roiConfigFile");
bool enableExternalHints = cmd.get<bool>("enableExternalHints");
bool enableTemporalHints = cmd.get<bool>("enableTemporalHints");
bool enableCostBuffer = cmd.get<bool>("enableCostBuffer");
int gpuId = cmd.get<int>("gpuid");
int outputBufferGridSize = cmd.get<int>("outputGridSize");
int hintBufferGridSize = cmd.get<int>("hintGridSize");
if (pathL.empty()) std::cout << "Specify left image path" << std::endl;
if (pathR.empty()) std::cout << "Specify right image path" << std::endl;
if (preset.empty()) std::cout << "Specify perf preset for OpticalFlow algo" << std::endl;
if (pathL.empty() || pathR.empty()) return 0;
auto p = presetMap.find(preset);
if (p == presetMap.end())
{
std::cout << "Invalid preset level : " << preset << std::endl;
return 0;
}
NvidiaOpticalFlow_2_0::NVIDIA_OF_PERF_LEVEL perfPreset = p->second;
auto o = outputGridSize.find(outputBufferGridSize);
if (o == outputGridSize.end())
{
std::cout << "Invalid output grid size: " << outputBufferGridSize << std::endl;
return 0;
}
NvidiaOpticalFlow_2_0::NVIDIA_OF_OUTPUT_VECTOR_GRID_SIZE outBufGridSize = o->second;
NvidiaOpticalFlow_2_0::NVIDIA_OF_HINT_VECTOR_GRID_SIZE hintBufGridSize =
NvidiaOpticalFlow_2_0::NV_OF_HINT_VECTOR_GRID_SIZE_UNDEFINED;
if (enableExternalHints)
{
auto h = hintGridSize.find(hintBufferGridSize);
if (h == hintGridSize.end())
{
std::cout << "Invalid hint grid size: " << hintBufferGridSize << std::endl;
return 0;
}
hintBufGridSize = h->second;
}
std::vector<Rect> roiData;
if (!roiConfiFile.empty())
{
if (!parseROI(roiConfiFile, roiData))
{
std::cout << "Wrong Region of Interest config file, proceeding without ROI" << std::endl;
}
}
Mat frameL = imread(pathL, IMREAD_GRAYSCALE);
Mat frameR = imread(pathR, IMREAD_GRAYSCALE);
if (frameL.empty()) std::cout << "Can't open '" << pathL << "'" << std::endl;
if (frameR.empty()) std::cout << "Can't open '" << pathR << "'" << std::endl;
if (frameL.empty() || frameR.empty()) return -1;
Ptr<NvidiaOpticalFlow_2_0> nvof = NvidiaOpticalFlow_2_0::create(
frameL.size(), roiData, perfPreset, outBufGridSize, hintBufGridSize,
enableTemporalHints, enableExternalHints, enableCostBuffer, gpuId);
Mat flowx, flowy, flowxy, floatFlow, image;
nvof->calc(frameL, frameR, flowxy);
nvof->convertToFloat(flowxy, floatFlow);
if (!output.empty())
{
if (!writeOpticalFlow(output, floatFlow))
std::cout << "Failed to save Flow Vector" << std::endl;
else
std::cout << "Flow vector saved as '" << output << "'" << std::endl;
}
Mat planes[] = { flowx, flowy };
split(floatFlow, planes);
flowx = planes[0]; flowy = planes[1];
drawOpticalFlow(flowx, flowy, image, 10);
imshow("Colorize image", image);
waitKey(0);
nvof->collectGarbage();
}
catch (const std::exception &ex)
{
std::cout << ex.what() << std::endl;
return 1;
}
return 0;
}
|