File: optical_flow.cpp

package info (click to toggle)
opencv 4.10.0%2Bdfsg-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 282,092 kB
  • sloc: cpp: 1,178,079; xml: 682,621; python: 49,092; lisp: 31,150; java: 25,469; ansic: 11,039; javascript: 6,085; sh: 1,214; cs: 601; perl: 494; objc: 210; makefile: 173
file content (281 lines) | stat: -rw-r--r-- 8,322 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
#include <iostream>
#include <fstream>

#include "opencv2/core.hpp"
#include <opencv2/core/utility.hpp>
#include "opencv2/highgui.hpp"
#include "opencv2/cudaoptflow.hpp"
#include "opencv2/cudaarithm.hpp"

using namespace std;
using namespace cv;
using namespace cv::cuda;

inline bool isFlowCorrect(Point2f u)
{
    return !cvIsNaN(u.x) && !cvIsNaN(u.y) && fabs(u.x) < 1e9 && fabs(u.y) < 1e9;
}

static Vec3b computeColor(float fx, float fy)
{
    static bool first = true;

    // relative lengths of color transitions:
    // these are chosen based on perceptual similarity
    // (e.g. one can distinguish more shades between red and yellow
    //  than between yellow and green)
    const int RY = 15;
    const int YG = 6;
    const int GC = 4;
    const int CB = 11;
    const int BM = 13;
    const int MR = 6;
    const int NCOLS = RY + YG + GC + CB + BM + MR;
    static Vec3i colorWheel[NCOLS];

    if (first)
    {
        int k = 0;

        for (int i = 0; i < RY; ++i, ++k)
            colorWheel[k] = Vec3i(255, 255 * i / RY, 0);

        for (int i = 0; i < YG; ++i, ++k)
            colorWheel[k] = Vec3i(255 - 255 * i / YG, 255, 0);

        for (int i = 0; i < GC; ++i, ++k)
            colorWheel[k] = Vec3i(0, 255, 255 * i / GC);

        for (int i = 0; i < CB; ++i, ++k)
            colorWheel[k] = Vec3i(0, 255 - 255 * i / CB, 255);

        for (int i = 0; i < BM; ++i, ++k)
            colorWheel[k] = Vec3i(255 * i / BM, 0, 255);

        for (int i = 0; i < MR; ++i, ++k)
            colorWheel[k] = Vec3i(255, 0, 255 - 255 * i / MR);

        first = false;
    }

    const float rad = sqrt(fx * fx + fy * fy);
    const float a = atan2(-fy, -fx) / (float)CV_PI;

    const float fk = (a + 1.0f) / 2.0f * (NCOLS - 1);
    const int k0 = static_cast<int>(fk);
    const int k1 = (k0 + 1) % NCOLS;
    const float f = fk - k0;

    Vec3b pix;

    for (int b = 0; b < 3; b++)
    {
        const float col0 = colorWheel[k0][b] / 255.0f;
        const float col1 = colorWheel[k1][b] / 255.0f;

        float col = (1 - f) * col0 + f * col1;

        if (rad <= 1)
            col = 1 - rad * (1 - col); // increase saturation with radius
        else
            col *= .75; // out of range

        pix[2 - b] = static_cast<uchar>(255.0 * col);
    }

    return pix;
}

static void drawOpticalFlow(const Mat_<float>& flowx, const Mat_<float>& flowy, Mat& dst, float maxmotion = -1)
{
    dst.create(flowx.size(), CV_8UC3);
    dst.setTo(Scalar::all(0));

    // determine motion range:
    float maxrad = maxmotion;

    if (maxmotion <= 0)
    {
        maxrad = 1;
        for (int y = 0; y < flowx.rows; ++y)
        {
            for (int x = 0; x < flowx.cols; ++x)
            {
                Point2f u(flowx(y, x), flowy(y, x));

                if (!isFlowCorrect(u))
                    continue;

                maxrad = max(maxrad, sqrt(u.x * u.x + u.y * u.y));
            }
        }
    }

    for (int y = 0; y < flowx.rows; ++y)
    {
        for (int x = 0; x < flowx.cols; ++x)
        {
            Point2f u(flowx(y, x), flowy(y, x));

            if (isFlowCorrect(u))
                dst.at<Vec3b>(y, x) = computeColor(u.x / maxrad, u.y / maxrad);
        }
    }
}

static void showFlow(const char* name, const GpuMat& d_flow)
{
    GpuMat planes[2];
    cuda::split(d_flow, planes);

    Mat flowx(planes[0]);
    Mat flowy(planes[1]);

    Mat out;
    drawOpticalFlow(flowx, flowy, out, 10);

    imshow(name, out);
}

int main(int argc, const char* argv[])
{
    string filename1, filename2;
    if (argc < 3)
    {
        cerr << "Usage : " << argv[0] << " <frame0> <frame1>" << endl;
        filename1 = "../data/basketball1.png";
        filename2 = "../data/basketball2.png";
    }
    else
    {
        filename1 = argv[1];
        filename2 = argv[2];
    }

    Mat frame0 = imread(filename1, IMREAD_GRAYSCALE);
    Mat frame1 = imread(filename2, IMREAD_GRAYSCALE);

    if (frame0.empty())
    {
        cerr << "Can't open image [" << filename1 << "]" << endl;
        return -1;
    }
    if (frame1.empty())
    {
        cerr << "Can't open image [" << filename2 << "]" << endl;
        return -1;
    }

    if (frame1.size() != frame0.size())
    {
        cerr << "Images should be of equal sizes" << endl;
        return -1;
    }

    GpuMat d_frame0(frame0);
    GpuMat d_frame1(frame1);

    GpuMat d_flow(frame0.size(), CV_32FC2), d_flowxy;

    Stream inputStream, outputStream;

    Ptr<cuda::BroxOpticalFlow> brox = cuda::BroxOpticalFlow::create(0.197f, 50.0f, 0.8f, 10, 77, 10);
    Ptr<cuda::DensePyrLKOpticalFlow> lk = cuda::DensePyrLKOpticalFlow::create(Size(7, 7));
    Ptr<cuda::FarnebackOpticalFlow> farn = cuda::FarnebackOpticalFlow::create();
    Ptr<cuda::OpticalFlowDual_TVL1> tvl1 = cuda::OpticalFlowDual_TVL1::create();
    Ptr<cuda::NvidiaOpticalFlow_1_0> nvof_1_0 = cuda::NvidiaOpticalFlow_1_0::create(frame0.size(),
        NvidiaOpticalFlow_1_0::NVIDIA_OF_PERF_LEVEL::NV_OF_PERF_LEVEL_FAST, false, false, false, 0, inputStream, outputStream);
    Ptr<cuda::NvidiaOpticalFlow_2_0> nvof_2_0 = cuda::NvidiaOpticalFlow_2_0::create(frame0.size(),
        NvidiaOpticalFlow_2_0::NVIDIA_OF_PERF_LEVEL::NV_OF_PERF_LEVEL_FAST, NvidiaOpticalFlow_2_0::NVIDIA_OF_OUTPUT_VECTOR_GRID_SIZE::NV_OF_OUTPUT_VECTOR_GRID_SIZE_1,
        NvidiaOpticalFlow_2_0::NVIDIA_OF_HINT_VECTOR_GRID_SIZE::NV_OF_HINT_VECTOR_GRID_SIZE_UNDEFINED, false, false, false, 0, inputStream, outputStream);

    {
        GpuMat d_frame0f;
        GpuMat d_frame1f;

        d_frame0.convertTo(d_frame0f, CV_32F, 1.0 / 255.0);
        d_frame1.convertTo(d_frame1f, CV_32F, 1.0 / 255.0);

        const int64 start = getTickCount();

        brox->calc(d_frame0f, d_frame1f, d_flow);

        const double timeSec = (getTickCount() - start) / getTickFrequency();
        cout << "Brox : " << timeSec << " sec" << endl;

        showFlow("Brox", d_flow);
    }

    {
        const int64 start = getTickCount();

        lk->calc(d_frame0, d_frame1, d_flow);

        const double timeSec = (getTickCount() - start) / getTickFrequency();
        cout << "LK : " << timeSec << " sec" << endl;

        showFlow("LK", d_flow);
    }

    {
        const int64 start = getTickCount();

        farn->calc(d_frame0, d_frame1, d_flow);

        const double timeSec = (getTickCount() - start) / getTickFrequency();
        cout << "Farn : " << timeSec << " sec" << endl;

        showFlow("Farn", d_flow);
    }

    {
        const int64 start = getTickCount();

        tvl1->calc(d_frame0, d_frame1, d_flow);

        const double timeSec = (getTickCount() - start) / getTickFrequency();
        cout << "TVL1 : " << timeSec << " sec" << endl;

        showFlow("TVL1", d_flow);
    }

    {
        //The timing displayed below includes the time taken to copy the input buffers to the OF CUDA input buffers
        //and to copy the output buffers from the OF CUDA output buffer to the output buffer.
        //Hence it is expected to be more than what is displayed in the NVIDIA Optical Flow SDK documentation.
        const int64 start = getTickCount();

        nvof_1_0->calc(d_frame0, d_frame1, d_flowxy);

        const double timeSec = (getTickCount() - start) / getTickFrequency();
        cout << "NVIDIAOpticalFlow_1_0 : " << timeSec << " sec" << endl;

        nvof_1_0->upSampler(d_flowxy, frame0.size(), nvof_1_0->getGridSize(), d_flow);

        showFlow("NVIDIAOpticalFlow_1_0", d_flow);
        nvof_1_0->collectGarbage();
    }

    {
        //The timing displayed below includes the time taken to copy the input buffers to the OF CUDA input buffers
        //and to copy the output buffers from the OF CUDA output buffer to the output buffer.
        //Hence it is expected to be more than what is displayed in the NVIDIA Optical Flow SDK documentation.
        const int64 start = getTickCount();

        nvof_2_0->calc(d_frame0, d_frame1, d_flowxy);

        const double timeSec = (getTickCount() - start) / getTickFrequency();
        cout << "NVIDIAOpticalFlow_2_0 : " << timeSec << " sec" << endl;

        nvof_2_0->convertToFloat(d_flowxy, d_flow);

        showFlow("NVIDIAOpticalFlow_2_0", d_flow);
        nvof_2_0->collectGarbage();
    }

    imshow("Frame 0", frame0);
    imshow("Frame 1", frame1);
    waitKey();

    return 0;
}