1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
|
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "test_precomp.hpp"
namespace opencv_test { namespace {
template <typename ElemType>
class GpuMatNDTest : public ::testing::Test
{
public:
using MatType = Mat_<ElemType>;
using CnType = typename Mat_<ElemType>::channel_type;
static constexpr int cn = DataType<ElemType>::channels;
using SizeArray = GpuMatND::SizeArray;
static MatType RandomMat(const SizeArray& size)
{
const auto dims = static_cast<int>(size.size());
MatType ret(dims, size.data());
for (ElemType& elem : ret)
for (int i = 0; i < cn; ++i)
elem[i] = cv::randu<CnType>();
return ret;
}
static std::vector<Range> RandomRange(const SizeArray& size)
{
const auto dims = static_cast<int>(size.size());
std::vector<Range> ret;
const auto margin = cv::randu<int>() & 0x1 + 1; // 1 or 2
for (int s : size)
if (s > margin * 2)
ret.emplace_back(margin, s-margin);
else
ret.push_back(Range::all());
if (dims == 1)
{
// Mat expects two ranges even in this case
ret.push_back(Range::all());
}
return ret;
}
static std::vector<Range> RandomRange2D(const SizeArray& size)
{
const auto dims = static_cast<int>(size.size());
std::vector<Range> ret = RandomRange(size);
for (int i = 0; i < dims - 2; ++i)
{
const auto start = cv::randu<unsigned int>() % size[i];
ret[i] = Range(static_cast<int>(start), static_cast<int>(start) + 1);
}
return ret;
}
static void doTest1(const SizeArray& size)
{
const MatType gold = RandomMat(size);
MatType dst;
GpuMatND gmat;
// simple upload, download test for GpuMatND
gmat.upload(gold);
gmat.download(dst);
EXPECT_TRUE(std::equal(gold.begin(), gold.end(), dst.begin()));
}
static void doTest2(const SizeArray& size)
{
const MatType gold = RandomMat(size);
const std::vector<Range> ranges = RandomRange(size);
const MatType goldSub = gold(ranges);
MatType dst;
GpuMatND gmat;
// upload partial mat, download it, and compare
gmat.upload(goldSub);
gmat.download(dst);
EXPECT_TRUE(std::equal(goldSub.begin(), goldSub.end(), dst.begin()));
// upload full mat, extract partial mat from it, download it, and compare
gmat.upload(gold);
gmat = gmat(ranges);
gmat.download(dst);
EXPECT_TRUE(std::equal(goldSub.begin(), goldSub.end(), dst.begin()));
}
static void doTest3(const SizeArray& size)
{
if (std::is_same<CnType, hfloat>::value) // GpuMat::convertTo is not implemented for CV_16F
return;
const MatType gold = RandomMat(size);
const std::vector<Range> ranges = RandomRange2D(size);
MatType dst;
GpuMatND gmat;
// Test GpuMatND to GpuMat conversion:
// extract a 2D-plane and set its elements in the extracted region to 1
// compare the values of the full mat between Mat and GpuMatND
gmat.upload(gold);
GpuMat plane = gmat(ranges).createGpuMatHeader();
EXPECT_TRUE(!plane.refcount); // plane points to externally allocated memory(a part of gmat)
const GpuMat dummy = plane.clone();
EXPECT_TRUE(dummy.refcount); // dummy is clone()-ed from plane, so it manages its memory
// currently, plane(GpuMat) points to a sub-matrix of gmat(GpuMatND)
// in this case, dummy and plane have same size and type,
// so plane does not get reallocated inside convertTo,
// so this convertTo sets a sub-matrix region of gmat to 1
dummy.convertTo(plane, -1, 0, 1);
EXPECT_TRUE(!plane.refcount); // plane still points to externally allocated memory(a part of gmat)
gmat.download(dst);
// set a sub-matrix region of gold to 1
Mat plane_ = gold(ranges);
const Mat dummy_ = plane_.clone();
dummy_.convertTo(plane_, -1, 0, 1);
EXPECT_TRUE(std::equal(gold.begin(), gold.end(), dst.begin()));
}
static void doTest4(const SizeArray& size)
{
if (std::is_same<CnType, hfloat>::value) // GpuMat::convertTo is not implemented for CV_16F
return;
const MatType gold = RandomMat(size);
const std::vector<Range> ranges = RandomRange2D(size);
MatType dst;
GpuMatND gmat;
// Test handling external memory
gmat.upload(gold);
const GpuMatND external(gmat.size, gmat.type(), gmat.getDevicePtr(), {gmat.step.begin(), gmat.step.end() - 1});
// set a sub-matrix region of external to 2
GpuMat plane = external(ranges).createGpuMatHeader();
const GpuMat dummy = plane.clone();
dummy.convertTo(plane, -1, 0, 2);
external.download(dst);
// set a sub-matrix region of gold to 2
Mat plane_ = gold(ranges);
const Mat dummy_ = plane_.clone();
dummy_.convertTo(plane_, -1, 0, 2);
EXPECT_TRUE(std::equal(gold.begin(), gold.end(), dst.begin()));
}
static void doTest5(const SizeArray& size)
{
if (std::is_same<CnType, hfloat>::value) // GpuMat::convertTo is not implemented for CV_16F
return;
const MatType gold = RandomMat(size);
const std::vector<Range> ranges = RandomRange(size);
MatType goldSub = gold(ranges);
MatType dst;
GpuMatND gmat;
// Upload a sub-mat, set a sub-region of the sub-mat to 3, download, and compare
gmat.upload(goldSub);
const std::vector<Range> rangesInRanges = RandomRange2D(gmat.size);
GpuMat plane = gmat(rangesInRanges).createGpuMatHeader();
const GpuMat dummy = plane.clone();
dummy.convertTo(plane, -1, 0, 3);
gmat.download(dst);
Mat plane_ = goldSub(rangesInRanges);
const Mat dummy_ = plane_.clone();
dummy_.convertTo(plane_, -1, 0, 3);
EXPECT_TRUE(std::equal(goldSub.begin(), goldSub.end(), dst.begin()));
}
};
using ElemTypes = ::testing::Types<
Vec<uchar, 1>, Vec<uchar, 2>, Vec<uchar, 3>, Vec<uchar, 4>, // CV_8U
Vec<schar, 1>, Vec<schar, 2>, Vec<schar, 3>, Vec<schar, 4>, // CV_8S
Vec<ushort, 1>, Vec<ushort, 2>, Vec<ushort, 3>, Vec<ushort, 4>, // CV_16U
Vec<short, 1>, Vec<short, 2>, Vec<short, 3>, Vec<short, 4>, // CV_16S
Vec<int, 1>, Vec<int, 2>, Vec<int, 3>, Vec<int, 4>, // CV_32S
Vec<float, 1>, Vec<float, 2>, Vec<float, 3>, Vec<float, 4>, // CV_32F
Vec<double, 1>, Vec<double, 2>, Vec<double, 3>, Vec<double, 4>, //CV_64F
Vec<hfloat, 1>, Vec<hfloat, 2>, Vec<hfloat, 3>, Vec<hfloat, 4> // CV_16F
>;
using SizeArray = GpuMatND::SizeArray;
#define DIFFERENT_SIZES_ND std::vector<SizeArray>{ \
SizeArray{2, 1}, SizeArray{3, 2, 1}, SizeArray{1, 3, 2, 1}, SizeArray{2, 1, 3, 2, 1}, SizeArray{3, 2, 1, 3, 2, 1}, \
SizeArray{1}, SizeArray{1, 1}, SizeArray{1, 1, 1}, SizeArray{1, 1, 1, 1}, \
SizeArray{4}, SizeArray{4, 4}, SizeArray{4, 4, 4}, SizeArray{4, 4, 4, 4}, \
SizeArray{11}, SizeArray{13, 11}, SizeArray{17, 13, 11}, SizeArray{19, 17, 13, 11}}
TYPED_TEST_CASE(GpuMatNDTest, ElemTypes);
TYPED_TEST(GpuMatNDTest, Test1)
{
for (auto& size : DIFFERENT_SIZES_ND)
GpuMatNDTest<TypeParam>::doTest1(size);
}
TYPED_TEST(GpuMatNDTest, Test2)
{
for (auto& size : DIFFERENT_SIZES_ND)
GpuMatNDTest<TypeParam>::doTest2(size);
}
TYPED_TEST(GpuMatNDTest, Test3)
{
for (auto& size : DIFFERENT_SIZES_ND)
GpuMatNDTest<TypeParam>::doTest3(size);
}
TYPED_TEST(GpuMatNDTest, Test4)
{
for (auto& size : DIFFERENT_SIZES_ND)
GpuMatNDTest<TypeParam>::doTest4(size);
}
TYPED_TEST(GpuMatNDTest, Test5)
{
for (auto& size : DIFFERENT_SIZES_ND)
GpuMatNDTest<TypeParam>::doTest5(size);
}
}} // namespace
|