File: test_feature2d.jl

package info (click to toggle)
opencv 4.10.0%2Bdfsg-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 282,092 kB
  • sloc: cpp: 1,178,079; xml: 682,621; python: 49,092; lisp: 31,150; java: 25,469; ansic: 11,039; javascript: 6,085; sh: 1,214; cs: 601; perl: 494; objc: 210; makefile: 173
file content (23 lines) | stat: -rw-r--r-- 685 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# test simple blob detector
img_gray = OpenCV.imread(joinpath(test_dir, "shared", "pic1.png"), OpenCV.IMREAD_GRAYSCALE)

detector = OpenCV.SimpleBlobDetector_create()

# Compare centers of keypoints and se how many of them match,
kps = OpenCV.detect(detector, img_gray)

kps_expect = [OpenCV.Point{Float32}(174.9114f0, 227.75146f0),OpenCV.Point{Float32}(106.925545f0, 179.5765f0)]
for kp in kps
    closest_match = 100000
    for kpe in kps_expect
        dx = kpe.x - kp.pt.x
        dy = kpe.y - kp.pt.y
        if sqrt(dx*dx+dy*dy) < closest_match
            closest_match = sqrt(dx*dx+dy*dy)
        end
    end

    @test closest_match < 10
end

println("feature2d test passed")