1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
|
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "test_precomp.hpp"
#include "opencv2/core/mat.hpp"
#include "opencv2/signal.hpp"
#include <vector>
#include <numeric>
#include <cmath>
#include <string>
#include <random>
#include <ctime>
#include <algorithm>
namespace opencv_test { namespace {
using namespace cv;
using namespace cv::signal;
float MSE(const Mat1f &outSignal, const Mat1f &refSignal)
{
float mse = 0.f;
for (int i = 0; i < refSignal.cols; ++i)
{
mse += powf(outSignal.at<float>(0,i) - refSignal.at<float>(0,i), 2.f);
}
mse /= refSignal.cols;
return mse;
}
// RRMSE = sqrt( MSE / SUM(sqr(refSignal(i))) ) * 100%
float RRMSE(const Mat1f &outSignal, const Mat1f &refSignal)
{
float rrmse = 0.f;
float div = 0.f;
rrmse = MSE(outSignal, refSignal);
for (int i = 0; i < refSignal.cols; ++i)
{
div += powf(refSignal.at<float>(0,i), 2.f);
}
rrmse /= div;
rrmse = sqrt(rrmse) * 100;
return rrmse;
}
TEST(ResampleTest, simple_resample_test_up)
{
Mat1f sample_signal(Size(1000U,1U));
Mat1f outSignal;
std::iota(sample_signal.begin(), sample_signal.end(), 1.f);
resampleSignal(sample_signal, outSignal, 16000U, 32000U);
vector<float> ref(outSignal.cols, 0.f);
for (uint32_t i = 0U; i < 2000U; ++i)
{
ref[i] = static_cast<float>(i) / 2.f;
}
EXPECT_NEAR(cvtest::norm(ref, NORM_L2) / cvtest::norm(outSignal, NORM_L2), 1.0f, 0.05f)
<< "\nL2_norm(refSignal) = " << cvtest::norm(ref, NORM_L2)
<< "\nL2_norm(outSignal) = " << cvtest::norm(outSignal, NORM_L2);
}
TEST(ResampleTest, resample_sin_signal_up_2)
{
Mat1f sample_signal(Size(1000U,1U));
Mat1f outSignal;
for (uint32_t i = 0U; i < (uint32_t)sample_signal.cols; ++i)
{
sample_signal.at<float>(0, i) = sinf(float(i));
}
resampleSignal(sample_signal, outSignal, 16000U, 32000U);
vector<float> ref(outSignal.cols, 0.f);
for (uint32_t i = 0U; i < 2000U; ++i)
{
ref[i] = sin(static_cast<float>(i) / 2.f);
}
EXPECT_NEAR(cvtest::norm(ref, NORM_L2) / cvtest::norm(outSignal, NORM_L2), 1.0f, 0.05f)
<< "\nL2_norm(refSignal) = " << cvtest::norm(ref, NORM_L2)
<< "\nL2_norm(outSignal) = " << cvtest::norm(outSignal, NORM_L2);
}
TEST(ResampleTest, simple_resample_test_dn)
{
Mat1f sample_signal(Size(1000U,1U));
Mat1f outSignal;
std::iota(sample_signal.begin(), sample_signal.end(), 1.f);
resampleSignal(sample_signal, outSignal, 32000U, 16000U);
vector<float> ref(outSignal.cols, 0.f);
for (uint32_t i = 0U; i < 500U; ++i)
{
ref[i] = static_cast<float>(i) * 2.f;
}
EXPECT_NEAR(cvtest::norm(ref, NORM_L2) / cvtest::norm(outSignal, NORM_L2), 1.0f, 0.05f)
<< "\nL2_norm(refSignal) = " << cvtest::norm(ref, NORM_L2)
<< "\nL2_norm(outSignal) = " << cvtest::norm(outSignal, NORM_L2);
}
TEST(ResampleTest, resample_sin_signal_dn_2)
{
Mat1f sample_signal(Size(1000U,1U));
Mat1f outSignal;
for (uint32_t i = 0U; i < (uint32_t)sample_signal.cols; ++i)
{
sample_signal.at<float>(0, i) = sinf(float(i));
}
resampleSignal(sample_signal, outSignal, 32000U, 16000U);
std::vector<float> ref(outSignal.cols, 0.f);
for (uint32_t i = 0U; i < 500U; ++i)
{
ref[i] = sin(static_cast<float>(i) * 2.f);
}
EXPECT_NEAR(cvtest::norm(ref, NORM_L2) / cvtest::norm(outSignal, NORM_L2), 1.0f, 0.05f)
<< "\nL2_norm(refSignal) = " << cvtest::norm(ref, NORM_L2)
<< "\nL2_norm(outSignal) = " << cvtest::norm(outSignal, NORM_L2);
}
// produce 1s of signal @ freq hz
void fillSignal(uint32_t freq, Mat1f &inSignal)
{
static std::default_random_engine e((unsigned int)(time(NULL)));
static std::uniform_real_distribution<> dis(0, 1); // range [0, 1)
static auto a = dis(e), b = dis(e), c = dis(e);
uint32_t idx = 0;
std::generate(inSignal.begin(), inSignal.end(), [&]()
{
float ret = static_cast<float>(sin(idx/(float)freq + a) + 3 * sin(CV_PI / 4 * (idx/(float)freq + b))
+ 5 * sin(CV_PI/12 * idx/(float)freq + c) + 20*cos(idx/(float)freq*4000));
idx++;
return ret;
});
}
class ResampleTestClass : public testing::TestWithParam<std::tuple<int, int>>
{
};
TEST_P(ResampleTestClass, func_test) {
auto params1 = GetParam();
uint32_t inFreq = std::get<0>(params1);
uint32_t outFreq = std::get<1>(params1);
// 1 second @ inFreq hz
Mat1f inSignal(Size(inFreq, 1U));
Mat1f outSignal;
// generating testing function as a sum of different sinusoids
fillSignal(inFreq, inSignal);
resampleSignal(inSignal, outSignal, inFreq, outFreq);
// reference signal
// 1 second @ outFreq hz
Mat1f refSignal(Size(outFreq, 1U));
fillSignal(outFreq, refSignal);
// calculating maxDiff
float maxDiff = 0.f;
// exclude 2 elements and last 2 elements from testing
for (uint32_t i = 2; i < (uint32_t)refSignal.cols - 2; ++i)
{
if(maxDiff < abs(refSignal.at<float>(0,i) - outSignal.at<float>(0,i)))
{
maxDiff = abs(refSignal.at<float>(0,i) - outSignal.at<float>(0,i));
}
}
auto max = std::max_element(outSignal.begin(), outSignal.end());
float maxDiffRel = maxDiff / (*max);
EXPECT_LE(maxDiffRel, 0.35f);
// calculating relative error of L2 norms
EXPECT_NEAR(abs(cvtest::norm(outSignal, NORM_L2) - cvtest::norm(refSignal, NORM_L2)) /
cvtest::norm(refSignal, NORM_L2), 0.0f, 0.05f);
// calculating relative mean squared error
float rrmse = RRMSE(outSignal, refSignal);
// 1% error
EXPECT_LE(rrmse, 1.f);
}
INSTANTIATE_TEST_CASE_P(RefSignalTestingCase,
ResampleTestClass,
::testing::Combine(testing::Values(16000, 32000, 44100, 48000),
testing::Values(16000, 32000, 44100, 48000)));
}} // namespace
|