File: test_signal.cpp

package info (click to toggle)
opencv 4.10.0%2Bdfsg-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 282,092 kB
  • sloc: cpp: 1,178,079; xml: 682,621; python: 49,092; lisp: 31,150; java: 25,469; ansic: 11,039; javascript: 6,085; sh: 1,214; cs: 601; perl: 494; objc: 210; makefile: 173
file content (180 lines) | stat: -rw-r--r-- 6,205 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.

#include "test_precomp.hpp"
#include "opencv2/core/mat.hpp"
#include "opencv2/signal.hpp"

#include <vector>
#include <numeric>
#include <cmath>
#include <string>
#include <random>
#include <ctime>
#include <algorithm>


namespace opencv_test { namespace {

using namespace cv;
using namespace cv::signal;

float MSE(const Mat1f &outSignal, const Mat1f &refSignal)
{
    float mse = 0.f;
    for (int i = 0; i < refSignal.cols; ++i)
    {
        mse += powf(outSignal.at<float>(0,i) - refSignal.at<float>(0,i), 2.f);
    }
    mse /= refSignal.cols;
    return mse;
}

// RRMSE = sqrt( MSE / SUM(sqr(refSignal(i))) ) * 100%
float RRMSE(const Mat1f &outSignal, const Mat1f &refSignal)
{
    float rrmse = 0.f;
    float div = 0.f;
    rrmse = MSE(outSignal, refSignal);
    for (int i = 0; i < refSignal.cols; ++i)
    {
        div += powf(refSignal.at<float>(0,i), 2.f);
    }
    rrmse /= div;
    rrmse = sqrt(rrmse) * 100;
    return rrmse;
}

TEST(ResampleTest, simple_resample_test_up)
{
    Mat1f sample_signal(Size(1000U,1U));
    Mat1f outSignal;
    std::iota(sample_signal.begin(), sample_signal.end(), 1.f);
    resampleSignal(sample_signal, outSignal, 16000U, 32000U);
    vector<float> ref(outSignal.cols, 0.f);
    for (uint32_t i = 0U; i < 2000U; ++i)
    {
        ref[i] = static_cast<float>(i) / 2.f;
    }
    EXPECT_NEAR(cvtest::norm(ref, NORM_L2) / cvtest::norm(outSignal, NORM_L2), 1.0f, 0.05f)
                << "\nL2_norm(refSignal) = " << cvtest::norm(ref, NORM_L2)
                << "\nL2_norm(outSignal) = " << cvtest::norm(outSignal, NORM_L2);
}

TEST(ResampleTest, resample_sin_signal_up_2)
{
    Mat1f sample_signal(Size(1000U,1U));
    Mat1f outSignal;
    for (uint32_t i = 0U; i < (uint32_t)sample_signal.cols; ++i)
    {
        sample_signal.at<float>(0, i) = sinf(float(i));
    }
    resampleSignal(sample_signal, outSignal, 16000U, 32000U);
    vector<float> ref(outSignal.cols, 0.f);
    for (uint32_t i = 0U; i < 2000U; ++i)
    {
        ref[i] = sin(static_cast<float>(i) / 2.f);
    }
    EXPECT_NEAR(cvtest::norm(ref, NORM_L2) / cvtest::norm(outSignal, NORM_L2), 1.0f, 0.05f)
                << "\nL2_norm(refSignal) = " << cvtest::norm(ref, NORM_L2)
                << "\nL2_norm(outSignal) = " << cvtest::norm(outSignal, NORM_L2);
}

TEST(ResampleTest, simple_resample_test_dn)
{
    Mat1f sample_signal(Size(1000U,1U));
    Mat1f outSignal;
    std::iota(sample_signal.begin(), sample_signal.end(), 1.f);
    resampleSignal(sample_signal, outSignal, 32000U, 16000U);
    vector<float> ref(outSignal.cols, 0.f);
    for (uint32_t i = 0U; i < 500U; ++i)
    {
        ref[i] = static_cast<float>(i) * 2.f;
    }
    EXPECT_NEAR(cvtest::norm(ref, NORM_L2) / cvtest::norm(outSignal, NORM_L2), 1.0f, 0.05f)
                << "\nL2_norm(refSignal) = " << cvtest::norm(ref, NORM_L2)
                << "\nL2_norm(outSignal) = " << cvtest::norm(outSignal, NORM_L2);
}

TEST(ResampleTest, resample_sin_signal_dn_2)
{
    Mat1f sample_signal(Size(1000U,1U));
    Mat1f outSignal;
    for (uint32_t i = 0U; i < (uint32_t)sample_signal.cols; ++i)
    {
        sample_signal.at<float>(0, i) = sinf(float(i));
    }
    resampleSignal(sample_signal, outSignal, 32000U, 16000U);
    std::vector<float> ref(outSignal.cols, 0.f);
    for (uint32_t i = 0U; i < 500U; ++i)
    {
        ref[i] = sin(static_cast<float>(i) * 2.f);
    }
    EXPECT_NEAR(cvtest::norm(ref, NORM_L2) / cvtest::norm(outSignal, NORM_L2), 1.0f, 0.05f)
                << "\nL2_norm(refSignal) = " << cvtest::norm(ref, NORM_L2)
                << "\nL2_norm(outSignal) = " << cvtest::norm(outSignal, NORM_L2);
}

// produce 1s of signal @ freq hz
void fillSignal(uint32_t freq, Mat1f &inSignal)
{
    static std::default_random_engine e((unsigned int)(time(NULL)));
    static std::uniform_real_distribution<> dis(0, 1); // range [0, 1)
    static auto a = dis(e), b = dis(e), c = dis(e);
    uint32_t idx = 0;
    std::generate(inSignal.begin(), inSignal.end(), [&]()
    {
        float ret = static_cast<float>(sin(idx/(float)freq + a) + 3 * sin(CV_PI / 4 * (idx/(float)freq + b))
                                    + 5 * sin(CV_PI/12 * idx/(float)freq + c) + 20*cos(idx/(float)freq*4000));
        idx++;
        return ret;
    });
}

class ResampleTestClass : public testing::TestWithParam<std::tuple<int, int>>
{
};

TEST_P(ResampleTestClass, func_test) {
    auto params1 = GetParam();
    uint32_t inFreq = std::get<0>(params1);
    uint32_t outFreq = std::get<1>(params1);
    // 1 second @ inFreq hz
    Mat1f inSignal(Size(inFreq, 1U));
    Mat1f outSignal;
    // generating testing function as a sum of different sinusoids
    fillSignal(inFreq, inSignal);
    resampleSignal(inSignal, outSignal, inFreq, outFreq);
    // reference signal
    // 1 second @ outFreq hz
    Mat1f refSignal(Size(outFreq, 1U));
    fillSignal(outFreq, refSignal);
    // calculating maxDiff
    float maxDiff = 0.f;
    // exclude 2 elements and last 2 elements from testing
    for (uint32_t i = 2; i < (uint32_t)refSignal.cols - 2; ++i)
    {
        if(maxDiff < abs(refSignal.at<float>(0,i) - outSignal.at<float>(0,i)))
        {
            maxDiff = abs(refSignal.at<float>(0,i) - outSignal.at<float>(0,i));
        }
    }
    auto max = std::max_element(outSignal.begin(), outSignal.end());
    float maxDiffRel = maxDiff / (*max);
    EXPECT_LE(maxDiffRel, 0.35f);
    // calculating relative error of L2 norms
    EXPECT_NEAR(abs(cvtest::norm(outSignal, NORM_L2) - cvtest::norm(refSignal, NORM_L2)) /
                    cvtest::norm(refSignal, NORM_L2), 0.0f, 0.05f);
    // calculating relative mean squared error
    float rrmse = RRMSE(outSignal, refSignal);
    // 1% error
    EXPECT_LE(rrmse, 1.f);
}

INSTANTIATE_TEST_CASE_P(RefSignalTestingCase,
                         ResampleTestClass,
                         ::testing::Combine(testing::Values(16000, 32000, 44100, 48000),
                                            testing::Values(16000, 32000, 44100, 48000)));

}} // namespace