File: test_structured_light.py

package info (click to toggle)
opencv 4.10.0%2Bdfsg-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 282,092 kB
  • sloc: cpp: 1,178,079; xml: 682,621; python: 49,092; lisp: 31,150; java: 25,469; ansic: 11,039; javascript: 6,085; sh: 1,214; cs: 601; perl: 494; objc: 210; makefile: 173
file content (94 lines) | stat: -rw-r--r-- 3,739 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
#!/usr/bin/env python

# Python 2/3 compatibility
from __future__ import print_function

import os, numpy

import cv2 as cv

from tests_common import NewOpenCVTests

class structured_light_test(NewOpenCVTests):

    def test_unwrap(self):
        paramsPsp = cv.structured_light_SinusoidalPattern_Params();
        paramsFtp = cv.structured_light_SinusoidalPattern_Params();
        paramsFaps = cv.structured_light_SinusoidalPattern_Params();
        paramsPsp.methodId = cv.structured_light.PSP;
        paramsFtp.methodId = cv.structured_light.FTP;
        paramsFaps.methodId = cv.structured_light.FAPS;

        sinusPsp = cv.structured_light.SinusoidalPattern_create(paramsPsp)
        sinusFtp = cv.structured_light.SinusoidalPattern_create(paramsFtp)
        sinusFaps = cv.structured_light.SinusoidalPattern_create(paramsFaps)

        captures = []
        for i in range(0,3):
            capture = self.get_sample('/cv/structured_light/data/capture_sin_%d.jpg'%i, cv.IMREAD_GRAYSCALE)
            if capture is None:
                raise unittest.SkipTest("Missing files with test data")
            captures.append(capture)

        rows,cols = captures[0].shape

        unwrappedPhaseMapPspRef = self.get_sample('/cv/structured_light/data/unwrappedPspTest.jpg',
                                                  cv.IMREAD_GRAYSCALE)
        unwrappedPhaseMapFtpRef = self.get_sample('/cv/structured_light/data/unwrappedFtpTest.jpg',
                                                  cv.IMREAD_GRAYSCALE)
        unwrappedPhaseMapFapsRef = self.get_sample('/cv/structured_light/data/unwrappedFapsTest.jpg',
                                                  cv.IMREAD_GRAYSCALE)

        wrappedPhaseMap,shadowMask = sinusPsp.computePhaseMap(captures);
        unwrappedPhaseMap = sinusPsp.unwrapPhaseMap(wrappedPhaseMap, (cols, rows), shadowMask=shadowMask)
        unwrappedPhaseMap8 = unwrappedPhaseMap*1 + 128
        unwrappedPhaseMap8 = numpy.uint8(unwrappedPhaseMap8)

        sumOfDiff = 0
        count = 0
        for i in range(rows):
            for j in range(cols):
                ref = int(unwrappedPhaseMapPspRef[i, j])
                comp = int(unwrappedPhaseMap8[i, j])
                sumOfDiff += (ref - comp)
                count += 1

        ratio = sumOfDiff/float(count)
        self.assertLessEqual(ratio, 0.2)

        wrappedPhaseMap,shadowMask = sinusFtp.computePhaseMap(captures);
        unwrappedPhaseMap = sinusFtp.unwrapPhaseMap(wrappedPhaseMap, (cols, rows), shadowMask=shadowMask)
        unwrappedPhaseMap8 = unwrappedPhaseMap*1 + 128
        unwrappedPhaseMap8 = numpy.uint8(unwrappedPhaseMap8)

        sumOfDiff = 0
        count = 0
        for i in range(rows):
            for j in range(cols):
                ref = int(unwrappedPhaseMapFtpRef[i, j])
                comp = int(unwrappedPhaseMap8[i, j])
                sumOfDiff += (ref - comp)
                count += 1

        ratio = sumOfDiff/float(count)
        self.assertLessEqual(ratio, 0.2)

        wrappedPhaseMap,shadowMask2 = sinusFaps.computePhaseMap(captures);
        unwrappedPhaseMap = sinusFaps.unwrapPhaseMap(wrappedPhaseMap, (cols, rows), shadowMask=shadowMask)
        unwrappedPhaseMap8 = unwrappedPhaseMap*1 + 128
        unwrappedPhaseMap8 = numpy.uint8(unwrappedPhaseMap8)

        sumOfDiff = 0
        count = 0
        for i in range(rows):
            for j in range(cols):
                ref = int(unwrappedPhaseMapFapsRef[i, j])
                comp = int(unwrappedPhaseMap8[i, j])
                sumOfDiff += (ref - comp)
                count += 1

        ratio = sumOfDiff/float(count)
        self.assertLessEqual(ratio, 0.2)

if __name__ == '__main__':
    NewOpenCVTests.bootstrap()