File: test_undistort_points.cpp

package info (click to toggle)
opencv 4.10.0%2Bdfsg-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 282,092 kB
  • sloc: cpp: 1,178,079; xml: 682,621; python: 49,092; lisp: 31,150; java: 25,469; ansic: 11,039; javascript: 6,085; sh: 1,214; cs: 601; perl: 494; objc: 210; makefile: 173
file content (199 lines) | stat: -rw-r--r-- 6,995 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.

#include <opencv2/ts/cuda_test.hpp> // EXPECT_MAT_NEAR
#include "opencv2/core/types.hpp"
#include "test_precomp.hpp"

namespace opencv_test { namespace {

class UndistortPointsTest : public ::testing::Test
{
protected:
    void generate3DPointCloud(vector<Point3f>& points, Point3f pmin = Point3f(-1,
    -1, 5), Point3f pmax = Point3f(1, 1, 10));
    void generateCameraMatrix(Mat& cameraMatrix);
    void generateDistCoeffs(Mat& distCoeffs, int count);
    cv::Mat generateRotationVector();

    double thresh = 1.0e-2;
};

void UndistortPointsTest::generate3DPointCloud(vector<Point3f>& points, Point3f pmin, Point3f pmax)
{
    RNG rng_Point = cv::theRNG(); // fix the seed to use "fixed" input 3D points
    for (size_t i = 0; i < points.size(); i++)
    {
        float _x = rng_Point.uniform(pmin.x, pmax.x);
        float _y = rng_Point.uniform(pmin.y, pmax.y);
        float _z = rng_Point.uniform(pmin.z, pmax.z);
        points[i] = Point3f(_x, _y, _z);
    }
}

void UndistortPointsTest::generateCameraMatrix(Mat& cameraMatrix)
{
    const double fcMinVal = 1e-3;
    const double fcMaxVal = 100;
    cameraMatrix.create(3, 3, CV_64FC1);
    cameraMatrix.setTo(Scalar(0));
    cameraMatrix.at<double>(0,0) = theRNG().uniform(fcMinVal, fcMaxVal);
    cameraMatrix.at<double>(1,1) = theRNG().uniform(fcMinVal, fcMaxVal);
    cameraMatrix.at<double>(0,2) = theRNG().uniform(fcMinVal, fcMaxVal);
    cameraMatrix.at<double>(1,2) = theRNG().uniform(fcMinVal, fcMaxVal);
    cameraMatrix.at<double>(2,2) = 1;
}

void UndistortPointsTest::generateDistCoeffs(Mat& distCoeffs, int count)
{
    distCoeffs = Mat::zeros(count, 1, CV_64FC1);
    for (int i = 0; i < count; i++)
        distCoeffs.at<double>(i,0) = theRNG().uniform(-0.1, 0.1);
}

cv::Mat UndistortPointsTest::generateRotationVector()
{
    Mat rvec(1, 3, CV_64F);
    theRNG().fill(rvec, RNG::UNIFORM, -0.2, 0.2);

    return rvec;
}

TEST_F(UndistortPointsTest, accuracy)
{
    Mat intrinsics, distCoeffs;
    generateCameraMatrix(intrinsics);

    vector<Point3f> points(500);
    generate3DPointCloud(points);

    Mat rvec = generateRotationVector();
    Mat R;
    cv::Rodrigues(rvec, R);


    int modelMembersCount[] = {4,5,8};
    for (int idx = 0; idx < 3; idx++)
    {
        generateDistCoeffs(distCoeffs, modelMembersCount[idx]);

        /* Project points with distortion */
        vector<Point2f> projectedPoints;
        projectPoints(Mat(points), Mat::zeros(3,1,CV_64FC1),
                      Mat::zeros(3,1,CV_64FC1), intrinsics,
                      distCoeffs, projectedPoints);

        /* Project points without distortion */
        vector<Point2f> realUndistortedPoints;
        projectPoints(Mat(points), rvec,
                      Mat::zeros(3,1,CV_64FC1), intrinsics,
                      Mat::zeros(4,1,CV_64FC1), realUndistortedPoints);

        /* Undistort points */
        Mat undistortedPoints;
        undistortPoints(Mat(projectedPoints), undistortedPoints, intrinsics, distCoeffs, R, intrinsics);

        EXPECT_MAT_NEAR(realUndistortedPoints, undistortedPoints.t(), thresh);
    }
}

TEST_F(UndistortPointsTest, undistortImagePointsAccuracy)
{
    Mat intrinsics, distCoeffs;
    generateCameraMatrix(intrinsics);

    vector<Point3f> points(500);
    generate3DPointCloud(points);


    int modelMembersCount[] = {4,5,8};
    for (int idx = 0; idx < 3; idx++)
    {
        generateDistCoeffs(distCoeffs, modelMembersCount[idx]);

        /* Project points with distortion */
        vector<Point2f> projectedPoints;
        projectPoints(Mat(points), Mat::zeros(3,1,CV_64FC1),
                      Mat::zeros(3,1,CV_64FC1), intrinsics,
                      distCoeffs, projectedPoints);

        /* Project points without distortion */
        vector<Point2f> realUndistortedPoints;
        projectPoints(Mat(points), Mat::zeros(3, 1, CV_64FC1),
                      Mat::zeros(3,1,CV_64FC1), intrinsics,
                      Mat::zeros(4,1,CV_64FC1), realUndistortedPoints);

        /* Undistort points */
        Mat undistortedPoints;
        TermCriteria termCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 5, thresh / 2);
        undistortImagePoints(Mat(projectedPoints), undistortedPoints, intrinsics, distCoeffs,
                             termCriteria);

        EXPECT_MAT_NEAR(realUndistortedPoints, undistortedPoints.t(), thresh);
    }
}


TEST_F(UndistortPointsTest, stop_criteria)
{
    Mat cameraMatrix = (Mat_<double>(3,3,CV_64F) << 857.48296979, 0, 968.06224829,
                                                        0, 876.71824265, 556.37145899,
                                                        0, 0, 1);
    Mat distCoeffs = (Mat_<double>(5,1,CV_64F) <<
                      -2.57614020e-01, 8.77086999e-02, -2.56970803e-04, -5.93390389e-04, -1.52194091e-02);

    Point2d pt_distorted(theRNG().uniform(0.0, 1920.0), theRNG().uniform(0.0, 1080.0));

    std::vector<Point2d> pt_distorted_vec;
    pt_distorted_vec.push_back(pt_distorted);

    const double maxError = 1e-6;
    TermCriteria criteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 100, maxError);

    std::vector<Point2d> pt_undist_vec;
    Mat rVec = Mat(Matx31d(0.1, -0.2, 0.2));
    Mat R;
    cv::Rodrigues(rVec, R);

    undistortPoints(pt_distorted_vec, pt_undist_vec, cameraMatrix, distCoeffs, R, noArray(), criteria);

    std::vector<Point3d> pt_undist_vec_homogeneous;
    pt_undist_vec_homogeneous.emplace_back(pt_undist_vec[0].x, pt_undist_vec[0].y, 1.0 );

    std::vector<Point2d> pt_redistorted_vec;
    projectPoints(pt_undist_vec_homogeneous, -rVec,
                  Mat::zeros(3,1,CV_64F), cameraMatrix, distCoeffs, pt_redistorted_vec);

    const double obtainedError = sqrt( pow(pt_distorted.x - pt_redistorted_vec[0].x, 2) + pow(pt_distorted.y - pt_redistorted_vec[0].y, 2) );

    ASSERT_LE(obtainedError, maxError);
}

TEST_F(UndistortPointsTest, regression_14583)
{
    const int col = 720;
    // const int row = 540;
    float camera_matrix_value[] = {
        437.8995f, 0.0f, 342.9241f,
        0.0f, 438.8216f, 273.7163f,
        0.0f, 0.0f,      1.0f
    };
    cv::Mat camera_interior(3, 3, CV_32F, camera_matrix_value);

    float camera_distort_value[] = {-0.34329f, 0.11431f, 0.0f, 0.0f, -0.017375f};
    cv::Mat camera_distort(1, 5, CV_32F, camera_distort_value);

    float distort_points_value[] = {col, 0.};
    cv::Mat distort_pt(1, 1, CV_32FC2, distort_points_value);

    cv::Mat undistort_pt;
    cv::undistortPoints(distort_pt, undistort_pt, camera_interior,
                        camera_distort, cv::Mat(), camera_interior);

    EXPECT_NEAR(distort_pt.at<Vec2f>(0)[0], undistort_pt.at<Vec2f>(0)[0], col / 2)
        << "distort point: " << distort_pt << std::endl
        << "undistort point: " << undistort_pt;
}

}} // namespace