File: test_quaternion.cpp

package info (click to toggle)
opencv 4.10.0%2Bdfsg-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 282,092 kB
  • sloc: cpp: 1,178,079; xml: 682,621; python: 49,092; lisp: 31,150; java: 25,469; ansic: 11,039; javascript: 6,085; sh: 1,214; cs: 601; perl: 494; objc: 210; makefile: 173
file content (492 lines) | stat: -rw-r--r-- 22,391 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.

#include "test_precomp.hpp"
#include <opencv2/ts/cuda_test.hpp>  // EXPECT_MAT_NEAR

#include <opencv2/core/quaternion.hpp>
#include <opencv2/core/dualquaternion.hpp>

namespace opencv_test{ namespace {

class QuatTest: public ::testing::Test
{
protected:
    void SetUp() override
    {
        q1 = {1,2,3,4};
        q2 = {2.5,-2,3.5,4};
        q1Unit = {1 / sqrt(30), sqrt(2) /sqrt(15), sqrt(3) / sqrt(10), 2 * sqrt(2) / sqrt(15)};
        q1Inv = {1.0 / 30, -1.0 / 15, -1.0 / 10, -2.0 / 15};
    }
    double scalar = 2.5;
    double angle = CV_PI;
    double qNorm2 = 2;
    Vec<double, 3> axis{1, 1, 1};
    Vec<double, 3> unAxis{0, 0, 0};
    Vec<double, 3> unitAxis{1.0 / sqrt(3), 1.0 / sqrt(3), 1.0 / sqrt(3)};
    Quatd q3 = Quatd::createFromAngleAxis(angle, axis);
    Quatd q3UnitAxis = Quatd::createFromAngleAxis(angle, unitAxis);
    Quat<double> q3Norm2 = q3 * qNorm2;

    Quat<double> q1Inv;
    Quat<double> q1;
    Quat<double> q2;
    Quat<double> q1Unit;

    Quatd qNull{0, 0, 0, 0};
    Quatd qIdentity{1, 0, 0, 0};
    QuatAssumeType assumeUnit = QUAT_ASSUME_UNIT;

};

TEST_F(QuatTest, constructor)
{
    Vec<double, 4> coeff{1, 2, 3, 4};
    EXPECT_EQ(Quat<double> (coeff), q1);
    EXPECT_EQ(q3, q3UnitAxis);
    EXPECT_ANY_THROW(Quatd::createFromAngleAxis(angle, unAxis));
    Matx33d R1{
        -1.0 / 3, 2.0 / 3 , 2.0 / 3,
        2.0 / 3 , -1.0 / 3, 2.0 / 3,
        2.0 / 3 , 2.0 / 3 , -1.0 / 3
    };
    Matx33d R2{
        -2.0 / 3, -2.0 / 3, -1.0 / 3,
        -2.0 / 3, 1.0 / 3, 2.0 / 3,
        -1.0 / 3, 2.0 / 3, -2.0 / 3
    };
    Matx33d R3{
        0.818181818181, 0.181818181818, 0.54545455454,
        0.545454545545, -0.54545454545, -0.6363636364,
        0.181818181818, 0.818181818182, -0.5454545455
    };
    Matx33d R4{
        0.818181818181, -0.181818181818, 0.54545455454,
        0.545454545545, 0.54545454545, -0.6363636364,
        -0.181818181818, 0.818181818182, 0.5454545455
    };
    Quatd qMat = Quatd::createFromRotMat(R1);
    Quatd qMat2 = Quatd::createFromRotMat(R2);
    Quatd qMat3 = Quatd::createFromRotMat(R3);
    Quatd qMat4 = Quatd::createFromRotMat(R4);
    EXPECT_EQ(qMat2, Quatd(0, -0.408248290463, 0.816496580927, 0.408248904638));
    EXPECT_EQ(qMat3, Quatd(-0.426401432711,-0.852802865422, -0.213200716355, -0.2132007163));
    EXPECT_EQ(qMat, q3);
    EXPECT_EQ(qMat4, -Quatd(0.852802865422, 0.426401432711221, 0.2132007163556, 0.2132007163));

    Vec3d rot{angle / sqrt(3),angle / sqrt(3), angle / sqrt(3)};
    Quatd rotQuad{0, 1.0 / sqrt(3), 1. / sqrt(3), 1. / sqrt(3)};
    Quatd qRot = Quatd::createFromRvec(rot);
    EXPECT_EQ(qRot, rotQuad);
    EXPECT_EQ(Quatd::createFromRvec(Vec3d(0, 0, 0)), qIdentity);
}

TEST_F(QuatTest, basicfuns)
{
    Quat<double> q1Conj{1, -2, -3, -4};
    EXPECT_EQ(q3Norm2.normalize(), q3);
    EXPECT_EQ(q1.norm(), sqrt(30));
    EXPECT_EQ(q1.normalize(), q1Unit);
    EXPECT_ANY_THROW(qNull.normalize());
    EXPECT_EQ(q1.conjugate(), q1Conj);
    EXPECT_EQ(q1.inv(), q1Inv);
    EXPECT_EQ(inv(q1), q1Inv);
    EXPECT_EQ(q3.inv(assumeUnit) * q3, qIdentity);
    EXPECT_EQ(q1.inv() * q1, qIdentity);
    EXPECT_ANY_THROW(inv(qNull));
    EXPECT_NO_THROW(q1.at(0));
    EXPECT_ANY_THROW(q1.at(4));

    Matx33d R{
        -2.0 / 3, 2.0 / 15 , 11.0 / 15,
        2.0 / 3 , -1.0 / 3 , 2.0 / 3  ,
        1.0 / 3 , 14.0 / 15, 2.0 / 15
    };
    Matx33d q1RotMat = q1.toRotMat3x3();
    EXPECT_MAT_NEAR(q1RotMat, R, 1e-6);
    Vec3d z_axis{0,0,1};
    Quatd q_unit1 = Quatd::createFromAngleAxis(angle, z_axis);
    Mat pointsA = (Mat_<double>(2, 3) << 1,0,0,1,0,1);
    pointsA = pointsA.t();
    Mat new_point = q_unit1.toRotMat3x3() * pointsA;
    Mat afterRo = (Mat_<double>(3, 2) << -1,-1,0,0,0,1);
    EXPECT_MAT_NEAR(afterRo, new_point, 1e-6);
    EXPECT_ANY_THROW(qNull.toRotVec());
    Vec3d rodVec{CV_PI/sqrt(3), CV_PI/sqrt(3), CV_PI/sqrt(3)};
    Vec3d q3Rod = q3.toRotVec();
    EXPECT_NEAR(q3Rod[0], rodVec[0], 1e-6);
    EXPECT_NEAR(q3Rod[1], rodVec[1], 1e-6);
    EXPECT_NEAR(q3Rod[2], rodVec[2], 1e-6);

    EXPECT_EQ(log(q1Unit, assumeUnit), log(q1Unit));
    EXPECT_EQ(log(qIdentity, assumeUnit), qNull);
    EXPECT_EQ(log(q3), Quatd(0, angle * unitAxis[0] / 2, angle * unitAxis[1] / 2, angle * unitAxis[2] / 2));
    EXPECT_ANY_THROW(log(qNull));
    EXPECT_EQ(log(Quatd(exp(1), 0, 0, 0)), qIdentity);

    EXPECT_EQ(exp(qIdentity), Quatd(exp(1), 0, 0, 0));
    EXPECT_EQ(exp(qNull), qIdentity);
    EXPECT_EQ(exp(Quatd(0, angle * unitAxis[0] / 2, angle * unitAxis[1] / 2, angle * unitAxis[2] / 2)), q3);

    EXPECT_EQ(power(q3, 2.0), Quatd::createFromAngleAxis(2*angle, axis));
    EXPECT_EQ(power(Quatd(0.5, 0.5, 0.5, 0.5), 2.0, assumeUnit), Quatd(-0.5,0.5,0.5,0.5));
    EXPECT_EQ(power(Quatd(0.5, 0.5, 0.5, 0.5), -2.0), Quatd(-0.5,-0.5,-0.5,-0.5));
    EXPECT_EQ(sqrt(q1), power(q1, 0.5));
    EXPECT_EQ(exp(q3 * log(q1)), power(q1, q3));
    EXPECT_EQ(exp(q1 * log(q3)), power(q3, q1, assumeUnit));
    EXPECT_EQ(crossProduct(q1, q3), (q1 * q3 - q3 * q1) / 2);
    EXPECT_EQ(sinh(qNull), qNull);
    EXPECT_EQ(sinh(q1), (exp(q1) - exp(-q1)) / 2);
    EXPECT_EQ(sinh(qIdentity), Quatd(sinh(1), 0, 0, 0));
    EXPECT_EQ(sinh(q1), Quatd(0.73233760604, -0.44820744998, -0.67231117497, -0.8964148999610843));
    EXPECT_EQ(cosh(qNull), qIdentity);
    EXPECT_EQ(cosh(q1), Quatd(0.961585117636, -0.34135217456, -0.51202826184, -0.682704349122));
    EXPECT_EQ(tanh(q1), sinh(q1) * inv(cosh(q1)));
    EXPECT_EQ(sin(qNull), qNull);
    EXPECT_EQ(sin(q1), Quatd(91.78371578403, 21.88648685303, 32.829730279543, 43.772973706058));
    EXPECT_EQ(cos(qNull), qIdentity);
    EXPECT_EQ(cos(q1), Quatd(58.9336461679, -34.0861836904, -51.12927553569, -68.17236738093));
    EXPECT_EQ(tan(q1), sin(q1)/cos(q1));
    EXPECT_EQ(sinh(asinh(q1)), q1);
    Quatd c1 = asinh(sinh(q1));
    EXPECT_EQ(sinh(c1), sinh(q1));
    EXPECT_EQ(cosh(acosh(q1)), q1);
    c1 = acosh(cosh(q1));
    EXPECT_EQ(cosh(c1), cosh(q1));
    EXPECT_EQ(tanh(atanh(q1)), q1);
    c1 = atanh(tanh(q1));
    EXPECT_EQ(tanh(q1), tanh(c1));
    EXPECT_EQ(asin(sin(q1)), q1);
    EXPECT_EQ(sin(asin(q1)), q1);
    EXPECT_EQ(acos(cos(q1)), q1);
    EXPECT_EQ(cos(acos(q1)), q1);
    EXPECT_EQ(atan(tan(q3)), q3);
    EXPECT_EQ(tan(atan(q1)), q1);
}

TEST_F(QuatTest, test_operator)
{
    Quatd minusQ{-1, -2, -3, -4};
    Quatd qAdd{3.5, 0, 6.5, 8};
    Quatd qMinus{-1.5, 4, -0.5, 0};
    Quatd qMultq{-20, 1, -5, 27};
    Quatd qMults{2.5, 5.0, 7.5, 10.0};
    Quatd qDvss{1.0 / 2.5, 2.0 / 2.5, 3.0 / 2.5, 4.0 / 2.5};
    Quatd qOrigin(q1);

    EXPECT_EQ(-q1, minusQ);
    EXPECT_EQ(q1 + q2, qAdd);
    EXPECT_EQ(q1 + scalar, Quatd(3.5, 2, 3, 4));
    EXPECT_EQ(scalar + q1, Quatd(3.5, 2, 3, 4));
    EXPECT_EQ(q1 + 2.0, Quatd(3, 2, 3, 4));
    EXPECT_EQ(2.0 + q1, Quatd(3, 2, 3, 4));
    EXPECT_EQ(q1 - q2, qMinus);
    EXPECT_EQ(q1 - scalar, Quatd(-1.5, 2, 3, 4));
    EXPECT_EQ(scalar - q1, Quatd(1.5, -2, -3, -4));
    EXPECT_EQ(q1 - 2.0, Quatd(-1, 2, 3, 4));
    EXPECT_EQ(2.0 - q1, Quatd(1, -2, -3, -4));
    EXPECT_EQ(q1 * q2, qMultq);
    EXPECT_EQ(q1 * scalar, qMults);
    EXPECT_EQ(scalar * q1, qMults);
    EXPECT_EQ(q1 / q1, qIdentity);
    EXPECT_EQ(q1 / scalar, qDvss);
    q1 += q2;
    EXPECT_EQ(q1, qAdd);
    q1 -= q2;
    EXPECT_EQ(q1, qOrigin);
    q1 *= q2;
    EXPECT_EQ(q1, qMultq);
    q1 /= q2;
    EXPECT_EQ(q1, qOrigin);
    q1 *= scalar;
    EXPECT_EQ(q1, qMults);
    q1 /= scalar;
    EXPECT_EQ(q1, qOrigin);
    EXPECT_NO_THROW(q1[0]);
    EXPECT_NO_THROW(q1.at(0));
    EXPECT_ANY_THROW(q1[4]);
    EXPECT_ANY_THROW(q1.at(4));
}

TEST_F(QuatTest, quatAttrs)
{
    double angleQ1 = 2 * acos(1.0 / sqrt(30));
    Vec3d axis1{0.3713906763541037, 0.557086014, 0.742781352};
    Vec<double, 3> q1axis1 = q1.getAxis();

    EXPECT_EQ(angleQ1, q1.getAngle());
    EXPECT_EQ(angleQ1, q1Unit.getAngle());
    EXPECT_EQ(angleQ1, q1Unit.getAngle(assumeUnit));
    EXPECT_EQ(0, qIdentity.getAngle());
    EXPECT_ANY_THROW(qNull.getAxis());
    EXPECT_NEAR(axis1[0], q1axis1[0], 1e-6);
    EXPECT_NEAR(axis1[1], q1axis1[1], 1e-6);
    EXPECT_NEAR(axis1[2], q1axis1[2], 1e-6);
    EXPECT_NEAR(q3Norm2.norm(), qNorm2, 1e-6);
    EXPECT_EQ(q3Norm2.getAngle(), angle);
    EXPECT_NEAR(axis1[0], axis1[0], 1e-6);
    EXPECT_NEAR(axis1[1], axis1[1], 1e-6);
    EXPECT_NEAR(axis1[2], axis1[2], 1e-6);
}

TEST_F(QuatTest, interpolation)
{
    Quatd qNoRot = Quatd::createFromAngleAxis(0, axis);
    Quatd qLerpInter(1.0 / 2, sqrt(3) / 6, sqrt(3) / 6, sqrt(3) / 6);
    EXPECT_EQ(Quatd::lerp(qNoRot, q3, 0), qNoRot);
    EXPECT_EQ(Quatd::lerp(qNoRot, q3, 1), q3);
    EXPECT_EQ(Quatd::lerp(qNoRot, q3, 0.5), qLerpInter);
    Quatd q3NrNn2 = qNoRot * qNorm2;
    EXPECT_EQ(Quatd::nlerp(q3NrNn2, q3Norm2, 0), qNoRot);
    EXPECT_EQ(Quatd::nlerp(q3NrNn2, q3Norm2, 1), q3);
    EXPECT_EQ(Quatd::nlerp(q3NrNn2, q3Norm2, 0.5), qLerpInter.normalize());
    EXPECT_EQ(Quatd::nlerp(qNoRot, q3, 0, assumeUnit), qNoRot);
    EXPECT_EQ(Quatd::nlerp(qNoRot, q3, 1, assumeUnit), q3);
    EXPECT_EQ(Quatd::nlerp(qNoRot, q3, 0.5, assumeUnit), qLerpInter.normalize());
    Quatd q3Minus(-q3);
    EXPECT_EQ(Quatd::nlerp(qNoRot, q3, 0.4), -Quatd::nlerp(qNoRot, q3Minus, 0.4));
    EXPECT_EQ(Quatd::slerp(qNoRot, q3, 0, assumeUnit), qNoRot);
    EXPECT_EQ(Quatd::slerp(qNoRot, q3, 1, assumeUnit), q3);
    EXPECT_EQ(Quatd::slerp(qNoRot, q3, 0.5, assumeUnit), -Quatd::nlerp(qNoRot, -q3, 0.5, assumeUnit));
    EXPECT_EQ(Quatd::slerp(qNoRot, q1, 0.5), Quatd(0.76895194, 0.2374325, 0.35614876, 0.47486501));
    EXPECT_EQ(Quatd::slerp(-qNoRot, q1, 0.5), Quatd(0.76895194, 0.2374325, 0.35614876, 0.47486501));
    EXPECT_EQ(Quatd::slerp(qNoRot, -q1, 0.5), -Quatd::slerp(-qNoRot, q1, 0.5));

    Quat<double> tr1 = Quatd::createFromAngleAxis(0, axis);
    Quat<double> tr2 = Quatd::createFromAngleAxis(angle / 2, axis);
    Quat<double> tr3 = Quatd::createFromAngleAxis(angle, axis);
    Quat<double> tr4 = Quatd::createFromAngleAxis(angle, Vec3d{-1/sqrt(2),0,1/(sqrt(2))});
    EXPECT_ANY_THROW(Quatd::spline(qNull, tr1, tr2, tr3, 0));
    EXPECT_EQ(Quatd::spline(tr1, tr2, tr3, tr4, 0), tr2);
    EXPECT_EQ(Quatd::spline(tr1, tr2, tr3, tr4, 1), tr3);
    EXPECT_EQ(Quatd::spline(tr1, tr2, tr3, tr4, 0.6, assumeUnit), Quatd::spline(tr1, tr2, tr3, tr4, 0.6));
    EXPECT_EQ(Quatd::spline(tr1, tr2, tr3, tr3, 0.5), Quatd::spline(tr1, -tr2, tr3, tr3, 0.5));
    EXPECT_EQ(Quatd::spline(tr1, tr2, tr3, tr3, 0.5), -Quatd::spline(-tr1, -tr2, -tr3, tr3, 0.5));
    EXPECT_EQ(Quatd::spline(tr1, tr2, tr3, tr3, 0.5), Quatd(0.336889853392, 0.543600719487, 0.543600719487, 0.543600719487));
}

static const Quatd qEuler[24] = {
    Quatd(0.7233214, 0.3919013, 0.2005605, 0.5319728),  //INT_XYZ
    Quatd(0.8223654, 0.0222635, 0.3604221, 0.4396766),  //INT_XZY
    Quatd(0.822365, 0.439677, 0.0222635, 0.360422),     //INT_YXZ
    Quatd(0.723321, 0.531973, 0.391901, 0.20056),       //INT_YZX
    Quatd(0.723321, 0.20056, 0.531973, 0.391901),       //INT_ZXY
    Quatd(0.822365, 0.360422, 0.439677, 0.0222635),     //INT_ZYX
    Quatd(0.653285, 0.65328, 0.369641, -0.0990435),     //INT_XYX
    Quatd(0.653285, 0.65328, 0.0990435, 0.369641),      //INT_XZX
    Quatd(0.653285, 0.369641, 0.65328, 0.0990435),      //INT_YXY
    Quatd(0.653285, -0.0990435, 0.65328, 0.369641),     //INT_YZY
    Quatd(0.653285, 0.369641, -0.0990435, 0.65328),     //INT_ZXZ
    Quatd(0.653285, 0.0990435, 0.369641, 0.65328),      //INT_ZYZ

    Quatd(0.822365, 0.0222635, 0.439677, 0.360422),     //EXT_XYZ
    Quatd(0.723321, 0.391901, 0.531973, 0.20056),       //EXT_XZY
    Quatd(0.723321, 0.20056, 0.391901, 0.531973),       //EXT_YXZ
    Quatd(0.822365, 0.360422, 0.0222635, 0.439677),     //EXT_YZX
    Quatd(0.822365, 0.439677, 0.360422, 0.0222635),     //EXT_ZXY
    Quatd(0.723321, 0.531973, 0.20056, 0.391901),       //EXT_ZYX
    Quatd(0.653285, 0.65328, 0.369641, 0.0990435),      //EXT_XYX
    Quatd(0.653285, 0.65328, -0.0990435, 0.369641),     //EXT_XZX
    Quatd(0.653285, 0.369641, 0.65328, -0.0990435),     //EXT_YXY
    Quatd(0.653285, 0.0990435, 0.65328, 0.369641),      //EXT_YZY
    Quatd(0.653285, 0.369641, 0.0990435, 0.65328),      //EXT_ZXZ
    Quatd(0.653285, -0.0990435, 0.369641, 0.65328)      //EXT_ZYZ
};

TEST_F(QuatTest, EulerAngles)
{
    Vec3d test_angle = {0.523598, 0.78539, 1.04719};
    for (QuatEnum::EulerAnglesType i = QuatEnum::EulerAnglesType::INT_XYZ; i <= QuatEnum::EulerAnglesType::EXT_ZYZ; i = (QuatEnum::EulerAnglesType)(i + 1))
    {
        SCOPED_TRACE(cv::format("EulerAnglesType=%d", i));
        Quatd q = Quatd::createFromEulerAngles(test_angle, i);
        EXPECT_EQ(q, qEuler[i]);
        Vec3d Euler_Angles = q.toEulerAngles(i);
        EXPECT_NEAR(Euler_Angles[0], test_angle[0], 1e-6);
        EXPECT_NEAR(Euler_Angles[1], test_angle[1], 1e-6);
        EXPECT_NEAR(Euler_Angles[2], test_angle[2], 1e-6);
    }
    Quatd qEuler0 = {0, 0, 0, 0};
    EXPECT_ANY_THROW(qEuler0.toEulerAngles(QuatEnum::INT_XYZ));

    Quatd qEulerLock1 = {0.5612665, 0.43042, 0.5607083, 0.4304935};
    Vec3d test_angle_lock1 = {1.3089878, CV_PI * 0.5, 0};
    Vec3d Euler_Angles_solute_1 = qEulerLock1.toEulerAngles(QuatEnum::INT_XYZ);
    EXPECT_NEAR(Euler_Angles_solute_1[0], test_angle_lock1[0], 1e-6);
    EXPECT_NEAR(Euler_Angles_solute_1[1], test_angle_lock1[1], 1e-6);
    EXPECT_NEAR(Euler_Angles_solute_1[2], test_angle_lock1[2], 1e-6);

    Quatd qEulerLock2 = {0.7010574, 0.0922963, 0.7010573, -0.0922961};
    Vec3d test_angle_lock2 = {-0.2618, CV_PI * 0.5, 0};
    Vec3d Euler_Angles_solute_2 = qEulerLock2.toEulerAngles(QuatEnum::INT_ZYX);
    EXPECT_NEAR(Euler_Angles_solute_2[0], test_angle_lock2[0], 1e-6);
    EXPECT_NEAR(Euler_Angles_solute_2[1], test_angle_lock2[1], 1e-6);
    EXPECT_NEAR(Euler_Angles_solute_2[2], test_angle_lock2[2], 1e-6);

    Vec3d test_angle6 = {CV_PI * 0.25, CV_PI * 0.5, CV_PI * 0.25};
    Vec3d test_angle7 = {CV_PI * 0.5, CV_PI * 0.5, 0};
    EXPECT_EQ(Quatd::createFromEulerAngles(test_angle6, QuatEnum::INT_ZXY), Quatd::createFromEulerAngles(test_angle7, QuatEnum::INT_ZXY));
}



class DualQuatTest: public ::testing::Test
{
protected:
    double scalar = 2.5;
    double angle = CV_PI;
    Vec<double, 3> axis{1, 1, 1};
    Vec<double, 3> unAxis{0, 0, 0};
    Vec<double, 3> unitAxis{1.0 / sqrt(3), 1.0 / sqrt(3), 1.0 / sqrt(3)};
    DualQuatd dq1{1, 2, 3, 4, 5, 6, 7, 8};
    Vec3d trans{0, 0, 5};
    double rotation_angle = 2.0 / 3 * CV_PI;
    DualQuatd dq2 = DualQuatd::createFromAngleAxisTrans(rotation_angle, axis, trans);
    DualQuatd dqAllOne{1, 1, 1, 1, 1, 1, 1, 1};
    DualQuatd dqAllZero{0, 0, 0, 0, 0, 0, 0, 0};
    DualQuatd dqIdentity{1, 0, 0, 0, 0, 0, 0, 0};
    DualQuatd dqTrans{1, 0, 0, 0, 0, 2, 3, 4};
    DualQuatd dqOnlyTrans{0, 0, 0, 0, 0, 2, 3, 4};
    DualQuatd dualNumber1{-3,0,0,0,-31.1,0,0,0};
    DualQuatd dualNumber2{4,0,0,0,5.1,0,0,0};
};

TEST_F(DualQuatTest, constructor)
{
    EXPECT_EQ(dq1, DualQuatd::createFromQuat(Quatd(1, 2, 3, 4), Quatd(5, 6, 7, 8)));
    EXPECT_EQ(dq2 * dq2.conjugate(), dqIdentity);
    EXPECT_NEAR(dq2.getRotation(QUAT_ASSUME_UNIT).norm(), 1, 1e-6);
    EXPECT_NEAR(dq2.getRealPart().dot(dq2.getDualPart()), 0, 1e-6);
    EXPECT_MAT_NEAR(dq2.getTranslation(QUAT_ASSUME_UNIT), trans, 1e-6);
    DualQuatd q_conj = DualQuatd::createFromQuat(dq2.getRealPart().conjugate(), -dq2.getDualPart().conjugate());
    DualQuatd q{1,0,0,0,0,3,0,0};
    EXPECT_EQ(dq2 * q * q_conj, DualQuatd(1,0,0,0,0,0,3,5));
    Matx44d R1 = dq2.toMat();
    DualQuatd dq3 = DualQuatd::createFromMat(R1);
    EXPECT_EQ(dq3, dq2);
    axis = axis / std::sqrt(axis.dot(axis));
    Vec3d moment = 1.0 / 2 * (trans.cross(axis) + axis.cross(trans.cross(axis)) *
                              std::cos(rotation_angle / 2) / std::sin(rotation_angle / 2));
    double d = trans.dot(axis);
    DualQuatd dq4 = DualQuatd::createFromPitch(rotation_angle, d, axis, moment);
    EXPECT_EQ(dq4, dq3);
    EXPECT_EQ(dq2, DualQuatd::createFromAffine3(dq2.toAffine3()));
    EXPECT_EQ(dq1.normalize(), DualQuatd::createFromAffine3(dq1.toAffine3()));
}

TEST_F(DualQuatTest, test_operator)
{
    DualQuatd dq_origin{1, 2, 3, 4, 5, 6, 7, 8};
    EXPECT_EQ(dq1 - dqAllOne, DualQuatd(0, 1, 2, 3, 4, 5, 6, 7));
    EXPECT_EQ(-dq1, DualQuatd(-1, -2, -3, -4, -5, -6, -7, -8));
    EXPECT_EQ(dq1 + dqAllOne, DualQuatd(2, 3, 4, 5, 6, 7, 8, 9));
    EXPECT_EQ(dq1 / dq1, dqIdentity);
    DualQuatd dq3{-4, 1, 3, 2, -15.5, 0, -3, 8.5};
    EXPECT_EQ(dq1 * dq2, dq3);
    EXPECT_EQ(dq3 / dq2, dq1);
    DualQuatd dq12{2, 4, 6, 8, 10, 12, 14, 16};
    EXPECT_EQ(dq1 * 2.0, dq12);
    EXPECT_EQ(2.0 * dq1, dq12);
    EXPECT_EQ(dq1 - 1.0, DualQuatd(0, 2, 3, 4, 5, 6, 7, 8));
    EXPECT_EQ(1.0 - dq1, DualQuatd(0, -2, -3, -4, -5, -6, -7, -8));
    EXPECT_EQ(dq1 + 1.0, DualQuatd(2, 2, 3, 4, 5, 6, 7, 8));
    EXPECT_EQ(1.0 + dq1, DualQuatd(2, 2, 3, 4, 5, 6, 7, 8));
    dq1 += dq2;
    EXPECT_EQ(dq1, dq_origin + dq2);
    dq1 -= dq2;
    EXPECT_EQ(dq1, dq_origin);
    dq1 *= dq2;
    EXPECT_EQ(dq1, dq_origin * dq2);
    dq1 /= dq2;
    EXPECT_EQ(dq1, dq_origin);
}

TEST_F(DualQuatTest, basic_ops)
{
    EXPECT_EQ(dq1.getRealPart(), Quatd(1, 2, 3, 4));
    EXPECT_EQ(dq1.getDualPart(), Quatd(5, 6, 7, 8));
    EXPECT_EQ((dq1 * dq2).conjugate(), conjugate(dq1 * dq2));
    EXPECT_EQ(dq1.conjugate(), DualQuatd::createFromQuat(dq1.getRealPart().conjugate(), dq1.getDualPart().conjugate()));
    EXPECT_EQ((dq2 * dq1).conjugate(), dq1.conjugate() * dq2.conjugate());
    EXPECT_EQ(dq1.conjugate() * dq1, dq1.norm() * dq1.norm());
    EXPECT_EQ(dq1.conjugate() * dq1, dq1.norm().power(2.0));
    EXPECT_EQ(dualNumber2.power(2.0), DualQuatd(16, 0, 0, 0, 40.8, 0, 0, 0));
    EXPECT_EQ(dq1.power(2.0), (2.0 * dq1.log()).exp());
    EXPECT_EQ(power(dq1, 2.0), (exp(2.0 * log(dq1))));
    EXPECT_EQ(dq2.power(3.0 / 2, QUAT_ASSUME_UNIT).power(4.0 / 3, QUAT_ASSUME_UNIT), dq2 * dq2);
    EXPECT_EQ(dq2.power(-0.5).power(2.0), dq2.inv());
    EXPECT_EQ(power(dq1, dq2), exp(dq2 * log(dq1)));
    EXPECT_EQ(power(dq2, dq1, QUAT_ASSUME_UNIT), exp(dq1 * log(dq2)));
    EXPECT_EQ((dq2.norm() * dq1).power(2.0), dq1.power(2.0) * dq2.norm().power(2.0));
    DualQuatd q1norm = dq1.normalize();
    EXPECT_EQ(dq2.norm(), dqIdentity);
    EXPECT_NEAR(q1norm.getRealPart().norm(), 1, 1e-6);
    EXPECT_NEAR(q1norm.getRealPart().dot(q1norm.getDualPart()), 0, 1e-6);
    EXPECT_NEAR(dq1.getRotation().norm(), 1, 1e-6);
    EXPECT_NEAR(dq2.getRotation(QUAT_ASSUME_UNIT).norm(), 1, 1e-6);
    EXPECT_NEAR(dq2.getRotation(QUAT_ASSUME_UNIT).norm(), 1, 1e-6);
    EXPECT_MAT_NEAR(Mat(dq2.getTranslation()), Mat(trans), 1e-6);
    EXPECT_MAT_NEAR(Mat(q1norm.getTranslation(QUAT_ASSUME_UNIT)), Mat(dq1.getTranslation()), 1e-6);
    EXPECT_EQ(dq2.getTranslation(), dq2.getTranslation(QUAT_ASSUME_UNIT));
    EXPECT_EQ(dq1.inv() * dq1, dqIdentity);
    EXPECT_EQ(inv(dq1) * dq1, dqIdentity);
    EXPECT_EQ(dq2.inv(QUAT_ASSUME_UNIT) * dq2, dqIdentity);
    EXPECT_EQ(inv(dq2, QUAT_ASSUME_UNIT) * dq2, dqIdentity);
    EXPECT_EQ(dq2.inv(), dq2.conjugate());
    EXPECT_EQ(dqIdentity.inv(), dqIdentity);
    EXPECT_ANY_THROW(dqAllZero.inv());
    EXPECT_EQ(dqAllZero.exp(), dqIdentity);
    EXPECT_EQ(exp(dqAllZero), dqIdentity);
    EXPECT_ANY_THROW(log(dqAllZero));
    EXPECT_EQ(log(dqIdentity), dqAllZero);
    EXPECT_EQ(dqIdentity.log(), dqAllZero);
    EXPECT_EQ(dualNumber1 * dualNumber2, dualNumber2 * dualNumber1);
    EXPECT_EQ(dualNumber2.exp().log(), dualNumber2);
    EXPECT_EQ(dq2.log(QUAT_ASSUME_UNIT).exp(), dq2);
    EXPECT_EQ(exp(log(dq2, QUAT_ASSUME_UNIT)), dq2);
    EXPECT_EQ(dqIdentity.log(QUAT_ASSUME_UNIT).exp(), dqIdentity);
    EXPECT_EQ(dq1.log().exp(), dq1);
    EXPECT_EQ(dqTrans.log().exp(), dqTrans);
    EXPECT_MAT_NEAR(q1norm.toMat(QUAT_ASSUME_UNIT), dq1.toMat(), 1e-6);
    Matx44d R1 = dq2.toMat();
    Mat point = (Mat_<double>(4, 1) << 3, 0, 0, 1);
    Mat new_point = R1 * point;
    Mat after = (Mat_<double>(4, 1) << 0, 3, 5 ,1);
    EXPECT_MAT_NEAR(new_point,  after, 1e-6);
    Vec<double, 8> vec = dq1.toVec();
    EXPECT_EQ(DualQuatd(vec), dq1);
    Affine3d afd = q1norm.toAffine3(QUAT_ASSUME_UNIT);
    EXPECT_MAT_NEAR(Mat(afd.translation()), Mat(q1norm.getTranslation(QUAT_ASSUME_UNIT)), 1e-6);
    Affine3d dq1_afd = dq1.toAffine3();
    EXPECT_MAT_NEAR(dq1_afd.matrix, afd.matrix, 1e-6);
    EXPECT_ANY_THROW(dqAllZero.toAffine3());
}

TEST_F(DualQuatTest, interpolation)
{
    DualQuatd dq = DualQuatd::createFromAngleAxisTrans(8 * CV_PI / 5, Vec3d{0, 0, 1}, Vec3d{0, 0, 10});
    EXPECT_EQ(DualQuatd::sclerp(dqIdentity, dq, 0.5), DualQuatd::sclerp(-dqIdentity, dq, 0.5, false));
    EXPECT_EQ(DualQuatd::sclerp(dqIdentity, dq, 0), -dqIdentity);
    EXPECT_EQ(DualQuatd::sclerp(dqIdentity, dq2, 1), dq2);
    EXPECT_EQ(DualQuatd::sclerp(dqIdentity, dq2, 0.4, false, QUAT_ASSUME_UNIT), DualQuatd(0.91354546, 0.23482951, 0.23482951, 0.23482951, -0.23482951, -0.47824988, 0.69589767, 0.69589767));
    EXPECT_EQ(DualQuatd::dqblend(dqIdentity, dq1.normalize(), 0.2, QUAT_ASSUME_UNIT), DualQuatd::dqblend(dqIdentity, -dq1, 0.2));
    EXPECT_EQ(DualQuatd::dqblend(dqIdentity, dq2, 0.4), DualQuatd(0.91766294, 0.22941573, 0.22941573, 0.22941573, -0.21130397, -0.48298049, 0.66409818, 0.66409818));
    DualQuatd gdb = DualQuatd::gdqblend(Vec<DualQuatd, 3>{dqIdentity, dq, dq2}, Vec3d{0.4, 0, 0.6}, QUAT_ASSUME_UNIT);
    EXPECT_EQ(gdb, DualQuatd::dqblend(dqIdentity, dq2, 0.6));
    EXPECT_ANY_THROW(DualQuatd::gdqblend(Vec<DualQuatd, 1>{dq2}, Vec2d{0.5, 0.5}));
    Mat gdqb_d(1, 2, CV_64FC(7));
    gdqb_d.at<Vec<double, 7>>(0, 0) = Vec<double, 7>{1,2,3,4,5,6,7};
    gdqb_d.at<Vec<double, 7>>(0, 1) = Vec<double, 7>{1,2,3,4,5,6,7};
    EXPECT_ANY_THROW(DualQuatd::gdqblend(gdqb_d, Vec2d{0.5, 0.5}));
    Mat gdqb_f(1, 2, CV_32FC(8));
    gdqb_f.at<Vec<float, 8>>(0, 0) = Vec<float, 8>{1.f,2.f,3.f,4.f,5.f,6.f,7.f,8.f};
    gdqb_f.at<Vec<float, 8>>(0, 1) = Vec<float, 8>{1.f,2.f,3.f,4.f,5.f,6.f,7.f,8.f};
    EXPECT_ANY_THROW(DualQuatd::gdqblend(gdqb_f, Vec2d{0.5, 0.5}));
    EXPECT_ANY_THROW(DualQuatd::gdqblend(Vec<DualQuatd, 3>{dqIdentity, dq, dq2}, Vec3f{0.4f, 0.f, 0.6f}, QUAT_ASSUME_UNIT));
    EXPECT_EQ(gdb, DualQuatd::gdqblend(Vec<DualQuatd, 3>{dqIdentity, dq * dualNumber1, -dq2}, Vec3d{0.4, 0, 0.6}));
}


}} // namespace