1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
|
#ifdef HAVE_OPENCV_DNN
typedef dnn::DictValue LayerId;
typedef std::vector<dnn::MatShape> vector_MatShape;
typedef std::vector<std::vector<dnn::MatShape> > vector_vector_MatShape;
template<>
bool pyopencv_to(PyObject *o, dnn::DictValue &dv, const ArgInfo& info)
{
CV_UNUSED(info);
if (!o || o == Py_None)
return true; //Current state will be used
else if (PyLong_Check(o))
{
dv = dnn::DictValue((int64)PyLong_AsLongLong(o));
return true;
}
else if (PyInt_Check(o))
{
dv = dnn::DictValue((int64)PyInt_AS_LONG(o));
return true;
}
else if (PyFloat_Check(o))
{
dv = dnn::DictValue(PyFloat_AsDouble(o));
return true;
}
else
{
std::string str;
if (getUnicodeString(o, str))
{
dv = dnn::DictValue(str);
return true;
}
}
return false;
}
template<typename T>
PyObject* pyopencv_from(const dnn::DictValue &dv)
{
if (dv.size() > 1)
{
std::vector<T> vec(dv.size());
for (int i = 0; i < dv.size(); ++i)
vec[i] = dv.get<T>(i);
return pyopencv_from_generic_vec(vec);
}
else
return pyopencv_from(dv.get<T>());
}
template<>
PyObject* pyopencv_from(const dnn::DictValue &dv)
{
if (dv.isInt()) return pyopencv_from<int>(dv);
if (dv.isReal()) return pyopencv_from<float>(dv);
if (dv.isString()) return pyopencv_from<String>(dv);
CV_Error(Error::StsNotImplemented, "Unknown value type");
return NULL;
}
template<>
PyObject* pyopencv_from(const dnn::LayerParams& lp)
{
PyObject* dict = PyDict_New();
for (std::map<String, dnn::DictValue>::const_iterator it = lp.begin(); it != lp.end(); ++it)
{
CV_Assert(!PyDict_SetItemString(dict, it->first.c_str(), pyopencv_from(it->second)));
}
return dict;
}
template<>
PyObject* pyopencv_from(const std::vector<dnn::Target> &t)
{
return pyopencv_from(std::vector<int>(t.begin(), t.end()));
}
class pycvLayer CV_FINAL : public dnn::Layer
{
public:
pycvLayer(const dnn::LayerParams ¶ms, PyObject* pyLayer) : Layer(params)
{
PyGILState_STATE gstate;
gstate = PyGILState_Ensure();
PyObject* args = PyTuple_New(2);
CV_Assert(!PyTuple_SetItem(args, 0, pyopencv_from(params)));
CV_Assert(!PyTuple_SetItem(args, 1, pyopencv_from(params.blobs)));
o = PyObject_CallObject(pyLayer, args);
Py_DECREF(args);
PyGILState_Release(gstate);
if (!o)
CV_Error(Error::StsError, "Failed to create an instance of custom layer");
}
static void registerLayer(const std::string& type, PyObject* o)
{
std::map<std::string, std::vector<PyObject*> >::iterator it = pyLayers.find(type);
if (it != pyLayers.end())
it->second.push_back(o);
else
pyLayers[type] = std::vector<PyObject*>(1, o);
}
static void unregisterLayer(const std::string& type)
{
std::map<std::string, std::vector<PyObject*> >::iterator it = pyLayers.find(type);
if (it != pyLayers.end())
{
if (it->second.size() > 1)
it->second.pop_back();
else
pyLayers.erase(it);
}
}
static Ptr<dnn::Layer> create(dnn::LayerParams ¶ms)
{
std::map<std::string, std::vector<PyObject*> >::iterator it = pyLayers.find(params.type);
if (it == pyLayers.end())
CV_Error(Error::StsNotImplemented, "Layer with a type \"" + params.type +
"\" is not implemented");
CV_Assert(!it->second.empty());
return Ptr<dnn::Layer>(new pycvLayer(params, it->second.back()));
}
virtual bool getMemoryShapes(const std::vector<std::vector<int> > &inputs,
const int,
std::vector<std::vector<int> > &outputs,
std::vector<std::vector<int> > &) const CV_OVERRIDE
{
PyGILState_STATE gstate;
gstate = PyGILState_Ensure();
PyObject* args = PyList_New(inputs.size());
for(size_t i = 0; i < inputs.size(); ++i)
PyList_SetItem(args, i, pyopencv_from_generic_vec(inputs[i]));
PyObject* res = PyObject_CallMethodObjArgs(o, PyString_FromString("getMemoryShapes"), args, NULL);
Py_DECREF(args);
PyGILState_Release(gstate);
if (!res)
CV_Error(Error::StsNotImplemented, "Failed to call \"getMemoryShapes\" method");
CV_Assert(pyopencv_to_generic_vec(res, outputs, ArgInfo("", 0)));
return false;
}
virtual void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays) CV_OVERRIDE
{
PyGILState_STATE gstate;
gstate = PyGILState_Ensure();
std::vector<Mat> inputs, outputs;
inputs_arr.getMatVector(inputs);
outputs_arr.getMatVector(outputs);
PyObject* args = pyopencv_from(inputs);
PyObject* res = PyObject_CallMethodObjArgs(o, PyString_FromString("forward"), args, NULL);
Py_DECREF(args);
if (!res)
CV_Error(Error::StsNotImplemented, "Failed to call \"forward\" method");
std::vector<Mat> pyOutputs;
CV_Assert(pyopencv_to(res, pyOutputs, ArgInfo("", 0)));
Py_DECREF(res);
PyGILState_Release(gstate);
CV_Assert(pyOutputs.size() == outputs.size());
for (size_t i = 0; i < outputs.size(); ++i)
{
CV_Assert(pyOutputs[i].size == outputs[i].size);
CV_Assert(pyOutputs[i].type() == outputs[i].type());
pyOutputs[i].copyTo(outputs[i]);
}
}
private:
// Map layers types to python classes.
static std::map<std::string, std::vector<PyObject*> > pyLayers;
PyObject* o; // Instance of implemented python layer.
};
std::map<std::string, std::vector<PyObject*> > pycvLayer::pyLayers;
static PyObject *pyopencv_cv_dnn_registerLayer(PyObject*, PyObject *args, PyObject *kw)
{
const char *keywords[] = { "type", "class", NULL };
char* layerType;
PyObject *classInstance;
if (!PyArg_ParseTupleAndKeywords(args, kw, "sO", (char**)keywords, &layerType, &classInstance))
return NULL;
if (!PyCallable_Check(classInstance)) {
PyErr_SetString(PyExc_TypeError, "class must be callable");
return NULL;
}
pycvLayer::registerLayer(layerType, classInstance);
dnn::LayerFactory::registerLayer(layerType, pycvLayer::create);
Py_RETURN_NONE;
}
static PyObject *pyopencv_cv_dnn_unregisterLayer(PyObject*, PyObject *args, PyObject *kw)
{
const char *keywords[] = { "type", NULL };
char* layerType;
if (!PyArg_ParseTupleAndKeywords(args, kw, "s", (char**)keywords, &layerType))
return NULL;
pycvLayer::unregisterLayer(layerType);
dnn::LayerFactory::unregisterLayer(layerType);
Py_RETURN_NONE;
}
#endif // HAVE_OPENCV_DNN
|