1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
|
from __future__ import print_function
import sys
import argparse
import cv2 as cv
import tensorflow as tf
import numpy as np
import struct
if sys.version_info > (3,):
long = int
from tensorflow.python.tools import optimize_for_inference_lib
from tensorflow.tools.graph_transforms import TransformGraph
from tensorflow.core.framework.node_def_pb2 import NodeDef
from google.protobuf import text_format
parser = argparse.ArgumentParser(description="Use this script to create TensorFlow graph "
"with weights from OpenCV's face detection network. "
"Only backbone part of SSD model is converted this way. "
"Look for .pbtxt configuration file at "
"https://github.com/opencv/opencv_extra/tree/4.x/testdata/dnn/opencv_face_detector.pbtxt")
parser.add_argument('--model', help='Path to .caffemodel weights', required=True)
parser.add_argument('--proto', help='Path to .prototxt Caffe model definition', required=True)
parser.add_argument('--pb', help='Path to output .pb TensorFlow model', required=True)
parser.add_argument('--pbtxt', help='Path to output .pbxt TensorFlow graph', required=True)
parser.add_argument('--quantize', help='Quantize weights to uint8', action='store_true')
parser.add_argument('--fp16', help='Convert weights to half precision floats', action='store_true')
args = parser.parse_args()
assert(not args.quantize or not args.fp16)
dtype = tf.float16 if args.fp16 else tf.float32
################################################################################
cvNet = cv.dnn.readNetFromCaffe(args.proto, args.model)
def dnnLayer(name):
return cvNet.getLayer(long(cvNet.getLayerId(name)))
def scale(x, name):
with tf.variable_scope(name):
layer = dnnLayer(name)
w = tf.Variable(layer.blobs[0].flatten(), dtype=dtype, name='mul')
if len(layer.blobs) > 1:
b = tf.Variable(layer.blobs[1].flatten(), dtype=dtype, name='add')
return tf.nn.bias_add(tf.multiply(x, w), b)
else:
return tf.multiply(x, w, name)
def conv(x, name, stride=1, pad='SAME', dilation=1, activ=None):
with tf.variable_scope(name):
layer = dnnLayer(name)
w = tf.Variable(layer.blobs[0].transpose(2, 3, 1, 0), dtype=dtype, name='weights')
if dilation == 1:
conv = tf.nn.conv2d(x, filter=w, strides=(1, stride, stride, 1), padding=pad)
else:
assert(stride == 1)
conv = tf.nn.atrous_conv2d(x, w, rate=dilation, padding=pad)
if len(layer.blobs) > 1:
b = tf.Variable(layer.blobs[1].flatten(), dtype=dtype, name='bias')
conv = tf.nn.bias_add(conv, b)
return activ(conv) if activ else conv
def batch_norm(x, name):
with tf.variable_scope(name):
# Unfortunately, TensorFlow's batch normalization layer doesn't work with fp16 input.
# Here we do a cast to fp32 but remove it in the frozen graph.
if x.dtype != tf.float32:
x = tf.cast(x, tf.float32)
layer = dnnLayer(name)
assert(len(layer.blobs) >= 3)
mean = layer.blobs[0].flatten()
std = layer.blobs[1].flatten()
scale = layer.blobs[2].flatten()
eps = 1e-5
hasBias = len(layer.blobs) > 3
hasWeights = scale.shape != (1,)
if not hasWeights and not hasBias:
mean /= scale[0]
std /= scale[0]
mean = tf.Variable(mean, dtype=tf.float32, name='mean')
std = tf.Variable(std, dtype=tf.float32, name='std')
gamma = tf.Variable(scale if hasWeights else np.ones(mean.shape), dtype=tf.float32, name='gamma')
beta = tf.Variable(layer.blobs[3].flatten() if hasBias else np.zeros(mean.shape), dtype=tf.float32, name='beta')
bn = tf.nn.fused_batch_norm(x, gamma, beta, mean, std, eps,
is_training=False)[0]
if bn.dtype != dtype:
bn = tf.cast(bn, dtype)
return bn
def l2norm(x, name):
with tf.variable_scope(name):
layer = dnnLayer(name)
w = tf.Variable(layer.blobs[0].flatten(), dtype=dtype, name='mul')
return tf.nn.l2_normalize(x, 3, epsilon=1e-10) * w
### Graph definition ###########################################################
inp = tf.placeholder(dtype, [1, 300, 300, 3], 'data')
data_bn = batch_norm(inp, 'data_bn')
data_scale = scale(data_bn, 'data_scale')
# Instead of tf.pad we use tf.space_to_batch_nd layers which override convolution's padding strategy to explicit numbers
# data_scale = tf.pad(data_scale, [[0, 0], [3, 3], [3, 3], [0, 0]])
data_scale = tf.space_to_batch_nd(data_scale, [1, 1], [[3, 3], [3, 3]], name='Pad')
conv1_h = conv(data_scale, stride=2, pad='VALID', name='conv1_h')
conv1_bn_h = batch_norm(conv1_h, 'conv1_bn_h')
conv1_scale_h = scale(conv1_bn_h, 'conv1_scale_h')
conv1_relu = tf.nn.relu(conv1_scale_h)
conv1_pool = tf.layers.max_pooling2d(conv1_relu, pool_size=(3, 3), strides=(2, 2),
padding='SAME', name='conv1_pool')
layer_64_1_conv1_h = conv(conv1_pool, 'layer_64_1_conv1_h')
layer_64_1_bn2_h = batch_norm(layer_64_1_conv1_h, 'layer_64_1_bn2_h')
layer_64_1_scale2_h = scale(layer_64_1_bn2_h, 'layer_64_1_scale2_h')
layer_64_1_relu2 = tf.nn.relu(layer_64_1_scale2_h)
layer_64_1_conv2_h = conv(layer_64_1_relu2, 'layer_64_1_conv2_h')
layer_64_1_sum = layer_64_1_conv2_h + conv1_pool
layer_128_1_bn1_h = batch_norm(layer_64_1_sum, 'layer_128_1_bn1_h')
layer_128_1_scale1_h = scale(layer_128_1_bn1_h, 'layer_128_1_scale1_h')
layer_128_1_relu1 = tf.nn.relu(layer_128_1_scale1_h)
layer_128_1_conv1_h = conv(layer_128_1_relu1, stride=2, name='layer_128_1_conv1_h')
layer_128_1_bn2 = batch_norm(layer_128_1_conv1_h, 'layer_128_1_bn2')
layer_128_1_scale2 = scale(layer_128_1_bn2, 'layer_128_1_scale2')
layer_128_1_relu2 = tf.nn.relu(layer_128_1_scale2)
layer_128_1_conv2 = conv(layer_128_1_relu2, 'layer_128_1_conv2')
layer_128_1_conv_expand_h = conv(layer_128_1_relu1, stride=2, name='layer_128_1_conv_expand_h')
layer_128_1_sum = layer_128_1_conv2 + layer_128_1_conv_expand_h
layer_256_1_bn1 = batch_norm(layer_128_1_sum, 'layer_256_1_bn1')
layer_256_1_scale1 = scale(layer_256_1_bn1, 'layer_256_1_scale1')
layer_256_1_relu1 = tf.nn.relu(layer_256_1_scale1)
# layer_256_1_conv1 = tf.pad(layer_256_1_relu1, [[0, 0], [1, 1], [1, 1], [0, 0]])
layer_256_1_conv1 = tf.space_to_batch_nd(layer_256_1_relu1, [1, 1], [[1, 1], [1, 1]], name='Pad_1')
layer_256_1_conv1 = conv(layer_256_1_conv1, stride=2, pad='VALID', name='layer_256_1_conv1')
layer_256_1_bn2 = batch_norm(layer_256_1_conv1, 'layer_256_1_bn2')
layer_256_1_scale2 = scale(layer_256_1_bn2, 'layer_256_1_scale2')
layer_256_1_relu2 = tf.nn.relu(layer_256_1_scale2)
layer_256_1_conv2 = conv(layer_256_1_relu2, 'layer_256_1_conv2')
layer_256_1_conv_expand = conv(layer_256_1_relu1, stride=2, name='layer_256_1_conv_expand')
layer_256_1_sum = layer_256_1_conv2 + layer_256_1_conv_expand
layer_512_1_bn1 = batch_norm(layer_256_1_sum, 'layer_512_1_bn1')
layer_512_1_scale1 = scale(layer_512_1_bn1, 'layer_512_1_scale1')
layer_512_1_relu1 = tf.nn.relu(layer_512_1_scale1)
layer_512_1_conv1_h = conv(layer_512_1_relu1, 'layer_512_1_conv1_h')
layer_512_1_bn2_h = batch_norm(layer_512_1_conv1_h, 'layer_512_1_bn2_h')
layer_512_1_scale2_h = scale(layer_512_1_bn2_h, 'layer_512_1_scale2_h')
layer_512_1_relu2 = tf.nn.relu(layer_512_1_scale2_h)
layer_512_1_conv2_h = conv(layer_512_1_relu2, dilation=2, name='layer_512_1_conv2_h')
layer_512_1_conv_expand_h = conv(layer_512_1_relu1, 'layer_512_1_conv_expand_h')
layer_512_1_sum = layer_512_1_conv2_h + layer_512_1_conv_expand_h
last_bn_h = batch_norm(layer_512_1_sum, 'last_bn_h')
last_scale_h = scale(last_bn_h, 'last_scale_h')
fc7 = tf.nn.relu(last_scale_h, name='last_relu')
conv6_1_h = conv(fc7, 'conv6_1_h', activ=tf.nn.relu)
conv6_2_h = conv(conv6_1_h, stride=2, name='conv6_2_h', activ=tf.nn.relu)
conv7_1_h = conv(conv6_2_h, 'conv7_1_h', activ=tf.nn.relu)
# conv7_2_h = tf.pad(conv7_1_h, [[0, 0], [1, 1], [1, 1], [0, 0]])
conv7_2_h = tf.space_to_batch_nd(conv7_1_h, [1, 1], [[1, 1], [1, 1]], name='Pad_2')
conv7_2_h = conv(conv7_2_h, stride=2, pad='VALID', name='conv7_2_h', activ=tf.nn.relu)
conv8_1_h = conv(conv7_2_h, pad='SAME', name='conv8_1_h', activ=tf.nn.relu)
conv8_2_h = conv(conv8_1_h, pad='VALID', name='conv8_2_h', activ=tf.nn.relu)
conv9_1_h = conv(conv8_2_h, 'conv9_1_h', activ=tf.nn.relu)
conv9_2_h = conv(conv9_1_h, pad='VALID', name='conv9_2_h', activ=tf.nn.relu)
conv4_3_norm = l2norm(layer_256_1_relu1, 'conv4_3_norm')
### Locations and confidences ##################################################
locations = []
confidences = []
flattenLayersNames = [] # Collect all reshape layers names that should be replaced to flattens.
for top, suffix in zip([locations, confidences], ['_mbox_loc', '_mbox_conf']):
for bottom, name in zip([conv4_3_norm, fc7, conv6_2_h, conv7_2_h, conv8_2_h, conv9_2_h],
['conv4_3_norm', 'fc7', 'conv6_2', 'conv7_2', 'conv8_2', 'conv9_2']):
name += suffix
flat = tf.layers.flatten(conv(bottom, name))
flattenLayersNames.append(flat.name[:flat.name.find(':')])
top.append(flat)
mbox_loc = tf.concat(locations, axis=-1, name='mbox_loc')
mbox_conf = tf.concat(confidences, axis=-1, name='mbox_conf')
total = int(np.prod(mbox_conf.shape[1:]))
mbox_conf_reshape = tf.reshape(mbox_conf, [-1, 2], name='mbox_conf_reshape')
mbox_conf_softmax = tf.nn.softmax(mbox_conf_reshape, name='mbox_conf_softmax')
mbox_conf_flatten = tf.reshape(mbox_conf_softmax, [-1, total], name='mbox_conf_flatten')
flattenLayersNames.append('mbox_conf_flatten')
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
### Check correctness ######################################################
out_nodes = ['mbox_loc', 'mbox_conf_flatten']
inp_nodes = [inp.name[:inp.name.find(':')]]
np.random.seed(2701)
inputData = np.random.standard_normal([1, 3, 300, 300]).astype(np.float32)
cvNet.setInput(inputData)
cvNet.setPreferableBackend(cv.dnn.DNN_BACKEND_OPENCV)
outDNN = cvNet.forward(out_nodes)
outTF = sess.run([mbox_loc, mbox_conf_flatten], feed_dict={inp: inputData.transpose(0, 2, 3, 1)})
print('Max diff @ locations: %e' % np.max(np.abs(outDNN[0] - outTF[0])))
print('Max diff @ confidence: %e' % np.max(np.abs(outDNN[1] - outTF[1])))
# Save a graph
graph_def = sess.graph.as_graph_def()
# Freeze graph. Replaces variables to constants.
graph_def = tf.graph_util.convert_variables_to_constants(sess, graph_def, out_nodes)
# Optimize graph. Removes training-only ops, unused nodes.
graph_def = optimize_for_inference_lib.optimize_for_inference(graph_def, inp_nodes, out_nodes, dtype.as_datatype_enum)
# Fuse constant operations.
transforms = ["fold_constants(ignore_errors=True)"]
if args.quantize:
transforms += ["quantize_weights(minimum_size=0)"]
transforms += ["sort_by_execution_order"]
graph_def = TransformGraph(graph_def, inp_nodes, out_nodes, transforms)
# By default, float16 weights are stored in repeated tensor's field called
# `half_val`. It has type int32 with leading zeros for unused bytes.
# This type is encoded by Variant that means only 7 bits are used for value
# representation but the last one is indicated the end of encoding. This way
# float16 might takes 1 or 2 or 3 bytes depends on value. To improve compression,
# we replace all `half_val` values to `tensor_content` using only 2 bytes for everyone.
for node in graph_def.node:
if 'value' in node.attr:
halfs = node.attr["value"].tensor.half_val
if not node.attr["value"].tensor.tensor_content and halfs:
node.attr["value"].tensor.tensor_content = struct.pack('H' * len(halfs), *halfs)
node.attr["value"].tensor.ClearField('half_val')
# Serialize
with tf.gfile.FastGFile(args.pb, 'wb') as f:
f.write(graph_def.SerializeToString())
################################################################################
# Write a text graph representation
################################################################################
def tensorMsg(values):
msg = 'tensor { dtype: DT_FLOAT tensor_shape { dim { size: %d } }' % len(values)
for value in values:
msg += 'float_val: %f ' % value
return msg + '}'
# Remove Const nodes and unused attributes.
for i in reversed(range(len(graph_def.node))):
if graph_def.node[i].op in ['Const', 'Dequantize']:
del graph_def.node[i]
for attr in ['T', 'data_format', 'Tshape', 'N', 'Tidx', 'Tdim',
'use_cudnn_on_gpu', 'Index', 'Tperm', 'is_training',
'Tpaddings', 'Tblock_shape', 'Tcrops']:
if attr in graph_def.node[i].attr:
del graph_def.node[i].attr[attr]
# Append prior box generators
min_sizes = [30, 60, 111, 162, 213, 264]
max_sizes = [60, 111, 162, 213, 264, 315]
steps = [8, 16, 32, 64, 100, 300]
aspect_ratios = [[2], [2, 3], [2, 3], [2, 3], [2], [2]]
layers = [conv4_3_norm, fc7, conv6_2_h, conv7_2_h, conv8_2_h, conv9_2_h]
for i in range(6):
priorBox = NodeDef()
priorBox.name = 'PriorBox_%d' % i
priorBox.op = 'PriorBox'
priorBox.input.append(layers[i].name[:layers[i].name.find(':')])
priorBox.input.append(inp_nodes[0]) # data
text_format.Merge('i: %d' % min_sizes[i], priorBox.attr["min_size"])
text_format.Merge('i: %d' % max_sizes[i], priorBox.attr["max_size"])
text_format.Merge('b: true', priorBox.attr["flip"])
text_format.Merge('b: false', priorBox.attr["clip"])
text_format.Merge(tensorMsg(aspect_ratios[i]), priorBox.attr["aspect_ratio"])
text_format.Merge(tensorMsg([0.1, 0.1, 0.2, 0.2]), priorBox.attr["variance"])
text_format.Merge('f: %f' % steps[i], priorBox.attr["step"])
text_format.Merge('f: 0.5', priorBox.attr["offset"])
graph_def.node.extend([priorBox])
# Concatenate prior boxes
concat = NodeDef()
concat.name = 'mbox_priorbox'
concat.op = 'ConcatV2'
for i in range(6):
concat.input.append('PriorBox_%d' % i)
concat.input.append('mbox_loc/axis')
graph_def.node.extend([concat])
# DetectionOutput layer
detectionOut = NodeDef()
detectionOut.name = 'detection_out'
detectionOut.op = 'DetectionOutput'
detectionOut.input.append('mbox_loc')
detectionOut.input.append('mbox_conf_flatten')
detectionOut.input.append('mbox_priorbox')
text_format.Merge('i: 2', detectionOut.attr['num_classes'])
text_format.Merge('b: true', detectionOut.attr['share_location'])
text_format.Merge('i: 0', detectionOut.attr['background_label_id'])
text_format.Merge('f: 0.45', detectionOut.attr['nms_threshold'])
text_format.Merge('i: 400', detectionOut.attr['top_k'])
text_format.Merge('s: "CENTER_SIZE"', detectionOut.attr['code_type'])
text_format.Merge('i: 200', detectionOut.attr['keep_top_k'])
text_format.Merge('f: 0.01', detectionOut.attr['confidence_threshold'])
graph_def.node.extend([detectionOut])
# Replace L2Normalization subgraph onto a single node.
for i in reversed(range(len(graph_def.node))):
if graph_def.node[i].name in ['conv4_3_norm/l2_normalize/Square',
'conv4_3_norm/l2_normalize/Sum',
'conv4_3_norm/l2_normalize/Maximum',
'conv4_3_norm/l2_normalize/Rsqrt']:
del graph_def.node[i]
for node in graph_def.node:
if node.name == 'conv4_3_norm/l2_normalize':
node.op = 'L2Normalize'
node.input.pop()
node.input.pop()
node.input.append(layer_256_1_relu1.name)
node.input.append('conv4_3_norm/l2_normalize/Sum/reduction_indices')
break
softmaxShape = NodeDef()
softmaxShape.name = 'reshape_before_softmax'
softmaxShape.op = 'Const'
text_format.Merge(
'tensor {'
' dtype: DT_INT32'
' tensor_shape { dim { size: 3 } }'
' int_val: 0'
' int_val: -1'
' int_val: 2'
'}', softmaxShape.attr["value"])
graph_def.node.extend([softmaxShape])
for node in graph_def.node:
if node.name == 'mbox_conf_reshape':
node.input[1] = softmaxShape.name
elif node.name == 'mbox_conf_softmax':
text_format.Merge('i: 2', node.attr['axis'])
elif node.name in flattenLayersNames:
node.op = 'Flatten'
inpName = node.input[0]
node.input.pop()
node.input.pop()
node.input.append(inpName)
tf.train.write_graph(graph_def, "", args.pbtxt, as_text=True)
|