1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
|
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "perf_precomp.hpp"
#include <opencv2/dnn/shape_utils.hpp>
namespace opencv_test {
struct Conv1DParam_t {
int kernel;
struct BlobShape { int dims[3]; } shapeIn;
int outCN;
int groups;
int stride;
int dilation;
int pad[2];
const char* padMode;
bool hasBias;
double declared_flops;
};
// Details: #12142
static const Conv1DParam_t testConvolution1DConfigs[] = {
{3, {{1, 6, 10}}, 6, 1, 1, 1, {0, 0}, "VALID", true, 1776.},
{3, {{1, 2, 19}}, 2, 2, 2, 1, {1, 1}, "", true, 260.},
{3, {{1, 2, 25}}, 2, 2, 1, 1, {2, 2}, "SAME", false, 650.},
};
struct Conv1DParamID
{
enum {
CONV_0 = 0,
CONV_LAST = sizeof(testConvolution1DConfigs) / sizeof(testConvolution1DConfigs[0])
};
int val_;
Conv1DParamID(int val = 0) : val_(val) {}
operator int() const { return val_; }
static ::testing::internal::ParamGenerator<Conv1DParamID> all()
{
enum { NUM = (int)CONV_LAST };
Conv1DParamID v_[NUM]; for (int i = 0; i < NUM; ++i) { v_[i] = Conv1DParamID(i); } // reduce generated code size
return ::testing::ValuesIn(v_, v_ + NUM);
}
};
static inline void PrintTo(const Conv1DParamID& v, std::ostream* os)
{
CV_Assert((int)v >= 0); CV_Assert((int)v < Conv1DParamID::CONV_LAST);
const Conv1DParam_t& p = testConvolution1DConfigs[(int)v];
*os << "GFLOPS=" << cv::format("%.3f", p.declared_flops * 1e-9)
<< ", K=[" << p.kernel << "]"
<< ", IN={" << p.shapeIn.dims[0] << ", " << p.shapeIn.dims[1] << ", " << p.shapeIn.dims[2] << "}"
<< ", OCN=" << p.outCN;
if (p.groups > 1)
*os << ", G=" << p.groups;
if (p.stride != 1)
*os << ", S=" << p.stride;
if (p.dilation != 1)
*os << ", D=" << p.dilation;
if (p.pad[0] != 0 && p.pad[1] != 0 )
*os << ", P=(" << p.pad[0] << ", " << p.pad[1] << ")";
if (!((std::string)p.padMode).empty())
*os << ", PM=" << ((std::string)p.padMode);
if (p.hasBias)
*os << ", BIAS";
}
typedef tuple<Conv1DParamID, tuple<Backend, Target> > Conv1DTestParam_t;
typedef TestBaseWithParam<Conv1DTestParam_t> Conv1D;
PERF_TEST_P_(Conv1D, conv1d)
{
int test_id = (int)get<0>(GetParam());
ASSERT_GE(test_id, 0); ASSERT_LT(test_id, Conv1DParamID::CONV_LAST);
const Conv1DParam_t& params = testConvolution1DConfigs[test_id];
double declared_flops = params.declared_flops;
DictValue kernel = DictValue::arrayInt(¶ms.kernel, 1);
DictValue stride = DictValue::arrayInt(¶ms.stride, 1);
DictValue pad = DictValue::arrayInt(¶ms.pad[0], 2);
DictValue dilation = DictValue::arrayInt(¶ms.dilation, 1);
MatShape inputShape = MatShape(params.shapeIn.dims, params.shapeIn.dims + 3);
int outChannels = params.outCN;
int groups = params.groups;
std::string padMode(params.padMode);
bool hasBias = params.hasBias;
Backend backendId = get<0>(get<1>(GetParam()));
Target targetId = get<1>(get<1>(GetParam()));
if (targetId != DNN_TARGET_CPU)
throw SkipTestException("Only CPU is supported");
int inChannels = inputShape[1];
int sz[] = {outChannels, inChannels / groups, params.kernel};
Mat weights(3, &sz[0], CV_32F);
randu(weights, -1.0f, 1.0f);
LayerParams lp;
lp.set("kernel_size", kernel);
lp.set("pad", pad);
if (!padMode.empty())
lp.set("pad_mode", padMode);
lp.set("stride", stride);
lp.set("dilation", dilation);
lp.set("num_output", outChannels);
lp.set("group", groups);
lp.set("bias_term", hasBias);
lp.type = "Convolution";
lp.name = "testLayer";
lp.blobs.push_back(weights);
if (hasBias)
{
Mat bias(1, outChannels, CV_32F);
randu(bias, -1.0f, 1.0f);
lp.blobs.push_back(bias);
}
int inpSz[] = {1, inChannels, inputShape[2]};
Mat input(3, &inpSz[0], CV_32F);
randu(input, -1.0f, 1.0f);
Net net;
net.addLayerToPrev(lp.name, lp.type, lp);
net.setInput(input);
net.setPreferableBackend(backendId);
net.setPreferableTarget(targetId);
// warmup
Mat output = net.forward();
MatShape netInputShape = shape(input);
size_t weightsMemory = 0, blobsMemory = 0;
net.getMemoryConsumption(netInputShape, weightsMemory, blobsMemory);
int64 flops = net.getFLOPS(netInputShape);
CV_Assert(flops > 0);
std::cout
<< "IN=" << divUp(input.total() * input.elemSize(), 1u<<10) << " Kb " << netInputShape
<< " OUT=" << divUp(output.total() * output.elemSize(), 1u<<10) << " Kb " << shape(output)
<< " Weights(parameters): " << divUp(weightsMemory, 1u<<10) << " Kb"
<< " MFLOPS=" << flops * 1e-6 << std::endl;
TEST_CYCLE()
{
Mat res = net.forward();
}
EXPECT_NEAR(flops, declared_flops, declared_flops * 1e-6);
SANITY_CHECK_NOTHING();
}
INSTANTIATE_TEST_CASE_P(/**/, Conv1D, Combine(
Conv1DParamID::all(),
dnnBackendsAndTargets(false, false) // defined in ../test/test_common.hpp
));
} // namespace
|