File: cityscapes_semsegm_test_enet.py

package info (click to toggle)
opencv 4.10.0%2Bdfsg-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 282,092 kB
  • sloc: cpp: 1,178,079; xml: 682,621; python: 49,092; lisp: 31,150; java: 25,469; ansic: 11,039; javascript: 6,085; sh: 1,214; cs: 601; perl: 494; objc: 210; makefile: 173
file content (140 lines) | stat: -rw-r--r-- 4,666 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import numpy as np
import sys
import os
import fnmatch
import argparse

try:
    import cv2 as cv
except ImportError:
    raise ImportError('Can\'t find OpenCV Python module. If you\'ve built it from sources without installation, '
                      'configure environment variable PYTHONPATH to "opencv_build_dir/lib" directory (with "python3" subdirectory if required)')
try:
    import torch
except ImportError:
    raise ImportError('Can\'t find pytorch. Please install it by following instructions on the official site')

from torch.utils.serialization import load_lua
from pascal_semsegm_test_fcn import eval_segm_result, get_conf_mat, get_metrics, DatasetImageFetch, SemSegmEvaluation
from imagenet_cls_test_alexnet import Framework, DnnCaffeModel


class NormalizePreproc:
    def __init__(self):
        pass

    @staticmethod
    def process(img):
        image_data = np.array(img).transpose(2, 0, 1).astype(np.float32)
        image_data = np.expand_dims(image_data, 0)
        image_data /= 255.0
        return image_data


class CityscapesDataFetch(DatasetImageFetch):
    img_dir = ''
    segm_dir = ''
    segm_files = []
    colors = []
    i = 0

    def __init__(self, img_dir, segm_dir, preproc):
        self.img_dir = img_dir
        self.segm_dir = segm_dir
        self.segm_files = sorted([img for img in self.locate('*_color.png', segm_dir)])
        self.colors = self.get_colors()
        self.data_prepoc = preproc
        self.i = 0

    @staticmethod
    def get_colors():
        result = []
        colors_list = (
         (0, 0, 0), (128, 64, 128), (244, 35, 232), (70, 70, 70), (102, 102, 156), (190, 153, 153), (153, 153, 153),
         (250, 170, 30), (220, 220, 0), (107, 142, 35), (152, 251, 152), (70, 130, 180), (220, 20, 60), (255, 0, 0),
         (0, 0, 142), (0, 0, 70), (0, 60, 100), (0, 80, 100), (0, 0, 230), (119, 11, 32))

        for c in colors_list:
            result.append(DatasetImageFetch.pix_to_c(c))
        return result

    def __iter__(self):
        return self

    def next(self):
        if self.i < len(self.segm_files):
            segm_file = self.segm_files[self.i]
            segm = cv.imread(segm_file, cv.IMREAD_COLOR)[:, :, ::-1]
            segm = cv.resize(segm, (1024, 512), interpolation=cv.INTER_NEAREST)

            img_file = self.rreplace(self.img_dir + segm_file[len(self.segm_dir):], 'gtFine_color', 'leftImg8bit')
            assert os.path.exists(img_file)
            img = cv.imread(img_file, cv.IMREAD_COLOR)[:, :, ::-1]
            img = cv.resize(img, (1024, 512))

            self.i += 1
            gt = self.color_to_gt(segm, self.colors)
            img = self.data_prepoc.process(img)
            return img, gt
        else:
            self.i = 0
            raise StopIteration

    def get_num_classes(self):
        return len(self.colors)

    @staticmethod
    def locate(pattern, root_path):
        for path, dirs, files in os.walk(os.path.abspath(root_path)):
            for filename in fnmatch.filter(files, pattern):
                yield os.path.join(path, filename)

    @staticmethod
    def rreplace(s, old, new, occurrence=1):
        li = s.rsplit(old, occurrence)
        return new.join(li)


class TorchModel(Framework):
    net = object

    def __init__(self, model_file):
        self.net = load_lua(model_file)

    def get_name(self):
        return 'Torch'

    def get_output(self, input_blob):
        tensor = torch.FloatTensor(input_blob)
        out = self.net.forward(tensor).numpy()
        return out


class DnnTorchModel(DnnCaffeModel):
    net = cv.dnn.Net()

    def __init__(self, model_file):
        self.net = cv.dnn.readNetFromTorch(model_file)

    def get_output(self, input_blob):
        self.net.setBlob("", input_blob)
        self.net.forward()
        return self.net.getBlob(self.net.getLayerNames()[-1])

if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--imgs_dir", help="path to Cityscapes validation images dir, imgsfine/leftImg8bit/val")
    parser.add_argument("--segm_dir", help="path to Cityscapes dir with segmentation, gtfine/gtFine/val")
    parser.add_argument("--model", help="path to torch model, download it here: "
                        "https://www.dropbox.com/sh/dywzk3gyb12hpe5/AAD5YkUa8XgMpHs2gCRgmCVCa")
    parser.add_argument("--log", help="path to logging file")
    args = parser.parse_args()

    prep = NormalizePreproc()
    df = CityscapesDataFetch(args.imgs_dir, args.segm_dir, prep)

    fw = [TorchModel(args.model),
          DnnTorchModel(args.model)]

    segm_eval = SemSegmEvaluation(args.log)
    segm_eval.process(fw, df)