File: imagenet_cls_test_alexnet.py

package info (click to toggle)
opencv 4.10.0%2Bdfsg-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 282,092 kB
  • sloc: cpp: 1,178,079; xml: 682,621; python: 49,092; lisp: 31,150; java: 25,469; ansic: 11,039; javascript: 6,085; sh: 1,214; cs: 601; perl: 494; objc: 210; makefile: 173
file content (262 lines) | stat: -rw-r--r-- 10,206 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
from __future__ import print_function
from abc import ABCMeta, abstractmethod
import numpy as np
import sys
import os
import argparse
import time

try:
    import caffe
except ImportError:
    raise ImportError('Can\'t find Caffe Python module. If you\'ve built it from sources without installation, '
                      'configure environment variable PYTHONPATH to "git/caffe/python" directory')
try:
    import cv2 as cv
except ImportError:
    raise ImportError('Can\'t find OpenCV Python module. If you\'ve built it from sources without installation, '
                      'configure environment variable PYTHONPATH to "opencv_build_dir/lib" directory (with "python3" subdirectory if required)')

try:
    xrange          # Python 2
except NameError:
    xrange = range  # Python 3


class DataFetch(object):
    imgs_dir = ''
    frame_size = 0
    bgr_to_rgb = False
    __metaclass__ = ABCMeta

    @abstractmethod
    def preprocess(self, img):
        pass

    def get_batch(self, imgs_names):
        assert type(imgs_names) is list
        batch = np.zeros((len(imgs_names), 3, self.frame_size, self.frame_size)).astype(np.float32)
        for i in range(len(imgs_names)):
            img_name = imgs_names[i]
            img_file = self.imgs_dir + img_name
            assert os.path.exists(img_file)
            img = cv.imread(img_file, cv.IMREAD_COLOR)
            min_dim = min(img.shape[-3], img.shape[-2])
            resize_ratio = self.frame_size / float(min_dim)
            img = cv.resize(img, (0, 0), fx=resize_ratio, fy=resize_ratio)
            cols = img.shape[1]
            rows = img.shape[0]
            y1 = (rows - self.frame_size) / 2
            y2 = y1 + self.frame_size
            x1 = (cols - self.frame_size) / 2
            x2 = x1 + self.frame_size
            img = img[y1:y2, x1:x2]
            if self.bgr_to_rgb:
                img = img[..., ::-1]
            image_data = img[:, :, 0:3].transpose(2, 0, 1)
            batch[i] = self.preprocess(image_data)
        return batch


class MeanBlobFetch(DataFetch):
    mean_blob = np.ndarray(())

    def __init__(self, frame_size, mean_blob_path, imgs_dir):
        self.imgs_dir = imgs_dir
        self.frame_size = frame_size
        blob = caffe.proto.caffe_pb2.BlobProto()
        data = open(mean_blob_path, 'rb').read()
        blob.ParseFromString(data)
        self.mean_blob = np.array(caffe.io.blobproto_to_array(blob))
        start = (self.mean_blob.shape[2] - self.frame_size) / 2
        stop = start + self.frame_size
        self.mean_blob = self.mean_blob[:, :, start:stop, start:stop][0]

    def preprocess(self, img):
        return img - self.mean_blob


class MeanChannelsFetch(MeanBlobFetch):
    def __init__(self, frame_size, imgs_dir):
        self.imgs_dir = imgs_dir
        self.frame_size = frame_size
        self.mean_blob = np.ones((3, self.frame_size, self.frame_size)).astype(np.float32)
        self.mean_blob[0] *= 104
        self.mean_blob[1] *= 117
        self.mean_blob[2] *= 123


class MeanValueFetch(MeanBlobFetch):
    def __init__(self, frame_size, imgs_dir, bgr_to_rgb):
        self.imgs_dir = imgs_dir
        self.frame_size = frame_size
        self.mean_blob = np.ones((3, self.frame_size, self.frame_size)).astype(np.float32)
        self.mean_blob *= 117
        self.bgr_to_rgb = bgr_to_rgb


def get_correct_answers(img_list, img_classes, net_output_blob):
    correct_answers = 0
    for i in range(len(img_list)):
        indexes = np.argsort(net_output_blob[i])[-5:]
        correct_index = img_classes[img_list[i]]
        if correct_index in indexes:
            correct_answers += 1
    return correct_answers


class Framework(object):
    in_blob_name = ''
    out_blob_name = ''

    __metaclass__ = ABCMeta

    @abstractmethod
    def get_name(self):
        pass

    @abstractmethod
    def get_output(self, input_blob):
        pass


class CaffeModel(Framework):
    net = caffe.Net
    need_reshape = False

    def __init__(self, prototxt, caffemodel, in_blob_name, out_blob_name, need_reshape=False):
        caffe.set_mode_cpu()
        self.net = caffe.Net(prototxt, caffemodel, caffe.TEST)
        self.in_blob_name = in_blob_name
        self.out_blob_name = out_blob_name
        self.need_reshape = need_reshape

    def get_name(self):
        return 'Caffe'

    def get_output(self, input_blob):
        if self.need_reshape:
            self.net.blobs[self.in_blob_name].reshape(*input_blob.shape)
        return self.net.forward_all(**{self.in_blob_name: input_blob})[self.out_blob_name]


class DnnCaffeModel(Framework):
    net = object

    def __init__(self, prototxt, caffemodel, in_blob_name, out_blob_name):
        self.net = cv.dnn.readNetFromCaffe(prototxt, caffemodel)
        self.in_blob_name = in_blob_name
        self.out_blob_name = out_blob_name

    def get_name(self):
        return 'DNN'

    def get_output(self, input_blob):
        self.net.setInput(input_blob, self.in_blob_name)
        return self.net.forward(self.out_blob_name)

class DNNOnnxModel(Framework):
    net = object

    def __init__(self, onnx_file, in_blob_name, out_blob_name):
        self.net = cv.dnn.readNetFromONNX(onnx_file)
        self.in_blob_name = in_blob_name
        self.out_blob_name = out_blob_name

    def get_name(self):
        return 'DNN (ONNX)'

    def get_output(self, input_blob):
        self.net.setInput(input_blob, self.in_blob_name)
        return self.net.forward(self.out_blob_name)


class ClsAccEvaluation:
    log = sys.stdout
    img_classes = {}
    batch_size = 0

    def __init__(self, log_path, img_classes_file, batch_size):
        self.log = open(log_path, 'w')
        self.img_classes = self.read_classes(img_classes_file)
        self.batch_size = batch_size

    @staticmethod
    def read_classes(img_classes_file):
        result = {}
        with open(img_classes_file) as file:
            for l in file.readlines():
                result[l.split()[0]] = int(l.split()[1])
        return result

    def process(self, frameworks, data_fetcher):
        sorted_imgs_names = sorted(self.img_classes.keys())
        correct_answers = [0] * len(frameworks)
        samples_handled = 0
        blobs_l1_diff = [0] * len(frameworks)
        blobs_l1_diff_count = [0] * len(frameworks)
        blobs_l_inf_diff = [sys.float_info.min] * len(frameworks)
        inference_time = [0.0] * len(frameworks)

        for x in xrange(0, len(sorted_imgs_names), self.batch_size):
            sublist = sorted_imgs_names[x:x + self.batch_size]
            batch = data_fetcher.get_batch(sublist)

            samples_handled += len(sublist)

            frameworks_out = []
            fw_accuracy = []
            for i in range(len(frameworks)):
                start = time.time()
                out = frameworks[i].get_output(batch)
                end = time.time()
                correct_answers[i] += get_correct_answers(sublist, self.img_classes, out)
                fw_accuracy.append(100 * correct_answers[i] / float(samples_handled))
                frameworks_out.append(out)
                inference_time[i] += end - start
                print(samples_handled, 'Accuracy for', frameworks[i].get_name() + ':', fw_accuracy[i], file=self.log)
                print("Inference time, ms ", \
                    frameworks[i].get_name(), inference_time[i] / samples_handled * 1000, file=self.log)

            for i in range(1, len(frameworks)):
                log_str = frameworks[0].get_name() + " vs " + frameworks[i].get_name() + ':'
                diff = np.abs(frameworks_out[0] - frameworks_out[i])
                l1_diff = np.sum(diff) / diff.size
                print(samples_handled, "L1 difference", log_str, l1_diff, file=self.log)
                blobs_l1_diff[i] += l1_diff
                blobs_l1_diff_count[i] += 1
                if np.max(diff) > blobs_l_inf_diff[i]:
                    blobs_l_inf_diff[i] = np.max(diff)
                print(samples_handled, "L_INF difference", log_str, blobs_l_inf_diff[i], file=self.log)

            self.log.flush()

        for i in range(1, len(blobs_l1_diff)):
            log_str = frameworks[0].get_name() + " vs " + frameworks[i].get_name() + ':'
            print('Final l1 diff', log_str, blobs_l1_diff[i] / blobs_l1_diff_count[i], file=self.log)

if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--imgs_dir", help="path to ImageNet validation subset images dir, ILSVRC2012_img_val dir")
    parser.add_argument("--img_cls_file", help="path to file with classes ids for images, val.txt file from this "
                                               "archive: http://dl.caffe.berkeleyvision.org/caffe_ilsvrc12.tar.gz")
    parser.add_argument("--prototxt", help="path to caffe prototxt, download it here: "
                                        "https://github.com/BVLC/caffe/blob/master/models/bvlc_alexnet/deploy.prototxt")
    parser.add_argument("--caffemodel", help="path to caffemodel file, download it here: "
                                             "http://dl.caffe.berkeleyvision.org/bvlc_alexnet.caffemodel")
    parser.add_argument("--log", help="path to logging file")
    parser.add_argument("--mean", help="path to ImageNet mean blob caffe file, imagenet_mean.binaryproto file from"
                                       "this archive: http://dl.caffe.berkeleyvision.org/caffe_ilsvrc12.tar.gz")
    parser.add_argument("--batch_size", help="size of images in batch", default=1000)
    parser.add_argument("--frame_size", help="size of input image", default=227)
    parser.add_argument("--in_blob", help="name for input blob", default='data')
    parser.add_argument("--out_blob", help="name for output blob", default='prob')
    args = parser.parse_args()

    data_fetcher = MeanBlobFetch(args.frame_size, args.mean, args.imgs_dir)

    frameworks = [CaffeModel(args.prototxt, args.caffemodel, args.in_blob, args.out_blob),
                  DnnCaffeModel(args.prototxt, args.caffemodel, '', args.out_blob)]

    acc_eval = ClsAccEvaluation(args.log, args.img_cls_file, args.batch_size)
    acc_eval.process(frameworks, data_fetcher)