1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
|
from __future__ import print_function
from abc import ABCMeta, abstractmethod
import numpy as np
import sys
import argparse
import time
from imagenet_cls_test_alexnet import CaffeModel, DNNOnnxModel
try:
import cv2 as cv
except ImportError:
raise ImportError('Can\'t find OpenCV Python module. If you\'ve built it from sources without installation, '
'configure environment variable PYTHONPATH to "opencv_build_dir/lib" directory (with "python3" subdirectory if required)')
def get_metrics(conf_mat):
pix_accuracy = np.trace(conf_mat) / np.sum(conf_mat)
t = np.sum(conf_mat, 1)
num_cl = np.count_nonzero(t)
assert num_cl
mean_accuracy = np.sum(np.nan_to_num(np.divide(np.diagonal(conf_mat), t))) / num_cl
col_sum = np.sum(conf_mat, 0)
mean_iou = np.sum(
np.nan_to_num(np.divide(np.diagonal(conf_mat), (t + col_sum - np.diagonal(conf_mat))))) / num_cl
return pix_accuracy, mean_accuracy, mean_iou
def eval_segm_result(net_out):
assert type(net_out) is np.ndarray
assert len(net_out.shape) == 4
channels_dim = 1
y_dim = channels_dim + 1
x_dim = y_dim + 1
res = np.zeros(net_out.shape).astype(int)
for i in range(net_out.shape[y_dim]):
for j in range(net_out.shape[x_dim]):
max_ch = np.argmax(net_out[..., i, j])
res[0, max_ch, i, j] = 1
return res
def get_conf_mat(gt, prob):
assert type(gt) is np.ndarray
assert type(prob) is np.ndarray
conf_mat = np.zeros((gt.shape[0], gt.shape[0]))
for ch_gt in range(conf_mat.shape[0]):
gt_channel = gt[ch_gt, ...]
for ch_pr in range(conf_mat.shape[1]):
prob_channel = prob[ch_pr, ...]
conf_mat[ch_gt][ch_pr] = np.count_nonzero(np.multiply(gt_channel, prob_channel))
return conf_mat
class MeanChannelsPreproc:
def __init__(self):
pass
@staticmethod
def process(img, framework):
image_data = None
if framework == "Caffe":
image_data = cv.dnn.blobFromImage(img, scalefactor=1.0, mean=(123.0, 117.0, 104.0), swapRB=True)
elif framework == "DNN (ONNX)":
image_data = cv.dnn.blobFromImage(img, scalefactor=0.019, mean=(123.675, 116.28, 103.53), swapRB=True)
else:
raise ValueError("Unknown framework")
return image_data
class DatasetImageFetch(object):
__metaclass__ = ABCMeta
data_prepoc = object
@abstractmethod
def __iter__(self):
pass
@abstractmethod
def next(self):
pass
@staticmethod
def pix_to_c(pix):
return pix[0] * 256 * 256 + pix[1] * 256 + pix[2]
@staticmethod
def color_to_gt(color_img, colors):
num_classes = len(colors)
gt = np.zeros((num_classes, color_img.shape[0], color_img.shape[1])).astype(int)
for img_y in range(color_img.shape[0]):
for img_x in range(color_img.shape[1]):
c = DatasetImageFetch.pix_to_c(color_img[img_y][img_x])
if c in colors:
cls = colors.index(c)
gt[cls][img_y][img_x] = 1
return gt
class PASCALDataFetch(DatasetImageFetch):
img_dir = ''
segm_dir = ''
names = []
colors = []
i = 0
def __init__(self, img_dir, segm_dir, names_file, segm_cls_colors, preproc):
self.img_dir = img_dir
self.segm_dir = segm_dir
self.colors = self.read_colors(segm_cls_colors)
self.data_prepoc = preproc
self.i = 0
with open(names_file) as f:
for l in f.readlines():
self.names.append(l.rstrip())
@staticmethod
def read_colors(colors):
result = []
for color in colors:
result.append(DatasetImageFetch.pix_to_c(color))
return result
def __iter__(self):
return self
def __next__(self):
if self.i < len(self.names):
name = self.names[self.i]
self.i += 1
segm_file = self.segm_dir + name + ".png"
img_file = self.img_dir + name + ".jpg"
gt = self.color_to_gt(cv.imread(segm_file, cv.IMREAD_COLOR)[:, :, ::-1], self.colors)
img = cv.imread(img_file, cv.IMREAD_COLOR)
img_caffe = self.data_prepoc.process(img[:, :, ::-1], "Caffe")
img_dnn = self.data_prepoc.process(img[:, :, ::-1], "DNN (ONNX)")
img_dict = {
"Caffe": img_caffe,
"DNN (ONNX)": img_dnn
}
return img_dict, gt
else:
self.i = 0
raise StopIteration
def get_num_classes(self):
return len(self.colors)
class SemSegmEvaluation:
log = sys.stdout
def __init__(self, log_path,):
self.log = open(log_path, 'w')
def process(self, frameworks, data_fetcher):
samples_handled = 0
conf_mats = [np.zeros((data_fetcher.get_num_classes(), data_fetcher.get_num_classes())) for i in range(len(frameworks))]
blobs_l1_diff = [0] * len(frameworks)
blobs_l1_diff_count = [0] * len(frameworks)
blobs_l_inf_diff = [sys.float_info.min] * len(frameworks)
inference_time = [0.0] * len(frameworks)
for in_blob_dict, gt in data_fetcher:
frameworks_out = []
samples_handled += 1
for i in range(len(frameworks)):
start = time.time()
framework_name = frameworks[i].get_name()
out = frameworks[i].get_output(in_blob_dict[framework_name])
end = time.time()
segm = eval_segm_result(out)
conf_mats[i] += get_conf_mat(gt, segm[0])
frameworks_out.append(out)
inference_time[i] += end - start
pix_acc, mean_acc, miou = get_metrics(conf_mats[i])
name = frameworks[i].get_name()
print(samples_handled, 'Pixel accuracy, %s:' % name, 100 * pix_acc, file=self.log)
print(samples_handled, 'Mean accuracy, %s:' % name, 100 * mean_acc, file=self.log)
print(samples_handled, 'Mean IOU, %s:' % name, 100 * miou, file=self.log)
print("Inference time, ms ", \
frameworks[i].get_name(), inference_time[i] / samples_handled * 1000, file=self.log)
for i in range(1, len(frameworks)):
log_str = frameworks[0].get_name() + " vs " + frameworks[i].get_name() + ':'
diff = np.abs(frameworks_out[0] - frameworks_out[i])
l1_diff = np.sum(diff) / diff.size
print(samples_handled, "L1 difference", log_str, l1_diff, file=self.log)
blobs_l1_diff[i] += l1_diff
blobs_l1_diff_count[i] += 1
if np.max(diff) > blobs_l_inf_diff[i]:
blobs_l_inf_diff[i] = np.max(diff)
print(samples_handled, "L_INF difference", log_str, blobs_l_inf_diff[i], file=self.log)
self.log.flush()
for i in range(1, len(blobs_l1_diff)):
log_str = frameworks[0].get_name() + " vs " + frameworks[i].get_name() + ':'
print('Final l1 diff', log_str, blobs_l1_diff[i] / blobs_l1_diff_count[i], file=self.log)
# PASCAL VOC 2012 classes colors
colors_pascal_voc_2012 = [
[0, 0, 0],
[128, 0, 0],
[0, 128, 0],
[128, 128, 0],
[0, 0, 128],
[128, 0, 128],
[0, 128, 128],
[128, 128, 128],
[64, 0, 0],
[192, 0, 0],
[64, 128, 0],
[192, 128, 0],
[64, 0, 128],
[192, 0, 128],
[64, 128, 128],
[192, 128, 128],
[0, 64, 0],
[128, 64, 0],
[0, 192, 0],
[128, 192, 0],
[0, 64, 128],
]
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--imgs_dir", help="path to PASCAL VOC 2012 images dir, data/VOC2012/JPEGImages")
parser.add_argument("--segm_dir", help="path to PASCAL VOC 2012 segmentation dir, data/VOC2012/SegmentationClass/")
parser.add_argument("--val_names", help="path to file with validation set image names, download it here: "
"https://github.com/shelhamer/fcn.berkeleyvision.org/blob/master/data/pascal/seg11valid.txt")
parser.add_argument("--prototxt", help="path to caffe prototxt, download it here: "
"https://github.com/opencv/opencv/blob/4.x/samples/data/dnn/fcn8s-heavy-pascal.prototxt")
parser.add_argument("--caffemodel", help="path to caffemodel file, download it here: "
"http://dl.caffe.berkeleyvision.org/fcn8s-heavy-pascal.caffemodel")
parser.add_argument("--onnxmodel", help="path to onnx model file, download it here: "
"https://github.com/onnx/models/raw/491ce05590abb7551d7fae43c067c060eeb575a6/validated/vision/object_detection_segmentation/fcn/model/fcn-resnet50-12.onnx")
parser.add_argument("--log", help="path to logging file", default='log.txt')
parser.add_argument("--in_blob", help="name for input blob", default='data')
parser.add_argument("--out_blob", help="name for output blob", default='score')
args = parser.parse_args()
prep = MeanChannelsPreproc()
df = PASCALDataFetch(args.imgs_dir, args.segm_dir, args.val_names, colors_pascal_voc_2012, prep)
fw = [CaffeModel(args.prototxt, args.caffemodel, args.in_blob, args.out_blob, True),
DNNOnnxModel(args.onnxmodel, args.in_blob, args.out_blob)]
segm_eval = SemSegmEvaluation(args.log)
segm_eval.process(fw, df)
|