File: test_nms.cpp

package info (click to toggle)
opencv 4.10.0%2Bdfsg-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 282,092 kB
  • sloc: cpp: 1,178,079; xml: 682,621; python: 49,092; lisp: 31,150; java: 25,469; ansic: 11,039; javascript: 6,085; sh: 1,214; cs: 601; perl: 494; objc: 210; makefile: 173
file content (107 lines) | stat: -rw-r--r-- 3,423 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2017, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.

#include "test_precomp.hpp"

namespace opencv_test { namespace {

TEST(NMS, Accuracy)
{
    //reference results obtained using tf.image.non_max_suppression with iou_threshold=0.5
    std::string dataPath = findDataFile("dnn/nms_reference.yml");
    FileStorage fs(dataPath, FileStorage::READ);

    std::vector<Rect> bboxes;
    std::vector<float> scores;
    std::vector<int> ref_indices;

    fs["boxes"] >> bboxes;
    fs["probs"] >> scores;
    fs["output"] >> ref_indices;

    const float nms_thresh = .5f;
    const float score_thresh = .01f;
    std::vector<int> indices;
    cv::dnn::NMSBoxes(bboxes, scores, score_thresh, nms_thresh, indices);

    ASSERT_EQ(ref_indices.size(), indices.size());

    std::sort(indices.begin(), indices.end());
    std::sort(ref_indices.begin(), ref_indices.end());

    for(size_t i = 0; i < indices.size(); i++)
        ASSERT_EQ(indices[i], ref_indices[i]);
}

TEST(BatchedNMS, Accuracy)
{
    //reference results obtained using tf.image.non_max_suppression with iou_threshold=0.5
    std::string dataPath = findDataFile("dnn/batched_nms_reference.yml");
    FileStorage fs(dataPath, FileStorage::READ);

    std::vector<Rect> bboxes;
    std::vector<float> scores;
    std::vector<int> idxs;
    std::vector<int> ref_indices;

    fs["boxes"] >> bboxes;
    fs["probs"] >> scores;
    fs["idxs"] >> idxs;
    fs["output"] >> ref_indices;

    const float nms_thresh = .5f;
    const float score_thresh = .05f;
    std::vector<int> indices;
    cv::dnn::NMSBoxesBatched(bboxes, scores, idxs, score_thresh, nms_thresh, indices);

    ASSERT_EQ(ref_indices.size(), indices.size());

    std::sort(indices.begin(), indices.end());
    std::sort(ref_indices.begin(), ref_indices.end());

    for(size_t i = 0; i < indices.size(); i++)
        ASSERT_EQ(indices[i], ref_indices[i]);
}

TEST(SoftNMS, Accuracy)
{
    //reference results are obtained using TF v2.7 tf.image.non_max_suppression_with_scores
    std::string dataPath = findDataFile("dnn/soft_nms_reference.yml");
    FileStorage fs(dataPath, FileStorage::READ);

    std::vector<Rect> bboxes;
    std::vector<float> scores;
    std::vector<int> ref_indices;
    std::vector<float> ref_updated_scores;

    fs["boxes"] >> bboxes;
    fs["probs"] >> scores;
    fs["indices"] >> ref_indices;
    fs["updated_scores"] >> ref_updated_scores;

    std::vector<float> updated_scores;
    const float score_thresh = .01f;
    const float nms_thresh = .5f;
    std::vector<int> indices;
    const size_t top_k = 0;
    const float sigma = 1.; // sigma in TF is being multiplied by 2, so 0.5 should be passed there
    cv::dnn::softNMSBoxes(bboxes, scores, updated_scores, score_thresh, nms_thresh, indices, top_k, sigma);

    ASSERT_EQ(ref_indices.size(), indices.size());
    for(size_t i = 0; i < indices.size(); i++)
    {
        ASSERT_EQ(indices[i], ref_indices[i]);
    }

    ASSERT_EQ(ref_updated_scores.size(), updated_scores.size());
    for(size_t i = 0; i < updated_scores.size(); i++)
    {
        EXPECT_NEAR(updated_scores[i], ref_updated_scores[i], 1e-7);
    }
}

}} // namespace