File: test_tflite_importer.cpp

package info (click to toggle)
opencv 4.10.0%2Bdfsg-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 282,092 kB
  • sloc: cpp: 1,178,079; xml: 682,621; python: 49,092; lisp: 31,150; java: 25,469; ansic: 11,039; javascript: 6,085; sh: 1,214; cs: 601; perl: 494; objc: 210; makefile: 173
file content (275 lines) | stat: -rw-r--r-- 10,561 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.

/*
Test for TFLite models loading
*/

#include "test_precomp.hpp"
#include "npy_blob.hpp"

#include <opencv2/dnn/layer.details.hpp>  // CV_DNN_REGISTER_LAYER_CLASS
#include <opencv2/dnn/utils/debug_utils.hpp>
#include <opencv2/dnn/shape_utils.hpp>

#ifdef OPENCV_TEST_DNN_TFLITE

namespace opencv_test { namespace {

using namespace cv;
using namespace cv::dnn;

class Test_TFLite : public DNNTestLayer {
public:
    void testModel(Net& net, const std::string& modelName, const Mat& input, double l1 = 0, double lInf = 0);
    void testModel(const std::string& modelName, const Mat& input, double l1 = 0, double lInf = 0);
    void testModel(const std::string& modelName, const Size& inpSize, double l1 = 0, double lInf = 0);
    void testLayer(const std::string& modelName, double l1 = 0, double lInf = 0);
};

void testInputShapes(const Net& net, const std::vector<Mat>& inps) {
    std::vector<MatShape> inLayerShapes;
    std::vector<MatShape> outLayerShapes;
    net.getLayerShapes(MatShape(), 0, inLayerShapes, outLayerShapes);
    ASSERT_EQ(inLayerShapes.size(), inps.size());

    for (int i = 0; i < inps.size(); ++i) {
        ASSERT_EQ(inLayerShapes[i], shape(inps[i]));
    }
}

void Test_TFLite::testModel(Net& net, const std::string& modelName, const Mat& input, double l1, double lInf)
{
    l1 = l1 ? l1 : default_l1;
    lInf = lInf ? lInf : default_lInf;

    net.setPreferableBackend(backend);
    net.setPreferableTarget(target);

    testInputShapes(net, {input});
    net.setInput(input);

    std::vector<String> outNames = net.getUnconnectedOutLayersNames();

    std::vector<Mat> outs;
    net.forward(outs, outNames);

    ASSERT_EQ(outs.size(), outNames.size());
    for (int i = 0; i < outNames.size(); ++i) {
        Mat ref = blobFromNPY(findDataFile(format("dnn/tflite/%s_out_%s.npy", modelName.c_str(), outNames[i].c_str())));
        // A workaround solution for the following cases due to inconsistent shape definitions.
        // The details please see: https://github.com/opencv/opencv/pull/25297#issuecomment-2039081369
        if (modelName == "face_landmark" || modelName == "selfie_segmentation") {
            ref = ref.reshape(1, 1);
            outs[i] = outs[i].reshape(1, 1);
        }
        normAssert(ref, outs[i], outNames[i].c_str(), l1, lInf);
    }
}

void Test_TFLite::testModel(const std::string& modelName, const Mat& input, double l1, double lInf)
{
    Net net = readNet(findDataFile("dnn/tflite/" + modelName + ".tflite", false));
    testModel(net, modelName, input, l1, lInf);
}

void Test_TFLite::testModel(const std::string& modelName, const Size& inpSize, double l1, double lInf)
{
    Mat input = imread(findDataFile("cv/shared/lena.png"));
    input = blobFromImage(input, 1.0 / 255, inpSize, 0, true);
    testModel(modelName, input, l1, lInf);
}

void Test_TFLite::testLayer(const std::string& modelName, double l1, double lInf)
{
    Mat inp = blobFromNPY(findDataFile("dnn/tflite/" + modelName + "_inp.npy"));
    Net net = readNet(findDataFile("dnn/tflite/" + modelName + ".tflite"));
    testModel(net, modelName, inp, l1, lInf);
}

// https://google.github.io/mediapipe/solutions/face_mesh
TEST_P(Test_TFLite, face_landmark)
{
    if (backend == DNN_BACKEND_CUDA && target == DNN_TARGET_CUDA_FP16)
        applyTestTag(CV_TEST_TAG_DNN_SKIP_CUDA_FP16);
    double l1 = 2e-5, lInf = 2e-4;
    if (target == DNN_TARGET_CPU_FP16 || target == DNN_TARGET_CUDA_FP16 || target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD ||
        (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL))
    {
        l1 = 0.15;
        lInf = 0.82;
    }
    testModel("face_landmark", Size(192, 192), l1, lInf);
}

// https://google.github.io/mediapipe/solutions/face_detection
TEST_P(Test_TFLite, face_detection_short_range)
{
    double l1 = 0, lInf = 2e-4;
    if (target == DNN_TARGET_CPU_FP16 || target == DNN_TARGET_CUDA_FP16 || target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD ||
        (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL))
    {
        l1 = 0.04;
        lInf = 0.8;
    }
    testModel("face_detection_short_range", Size(128, 128), l1, lInf);
}

// https://google.github.io/mediapipe/solutions/selfie_segmentation
TEST_P(Test_TFLite, selfie_segmentation)
{
    double l1 = 0, lInf = 0;
    if (target == DNN_TARGET_CPU_FP16 || target == DNN_TARGET_CUDA_FP16 || target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD ||
        (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL))
    {
        l1 = 0.01;
        lInf = 0.48;
    }
    testModel("selfie_segmentation", Size(256, 256), l1, lInf);
}

TEST_P(Test_TFLite, max_unpooling)
{
    if (backend == DNN_BACKEND_CUDA)
        applyTestTag(CV_TEST_TAG_DNN_SKIP_CUDA);

#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2022010000)
        if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
            applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
#endif

    if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target != DNN_TARGET_CPU) {
        if (target == DNN_TARGET_OPENCL_FP16) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
        if (target == DNN_TARGET_OPENCL)      applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
        if (target == DNN_TARGET_MYRIAD)      applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
    }

    if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16)
        applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16);

    // Due Max Unpoling is a numerically unstable operation and small difference between frameworks
    // might lead to positional difference of maximal elements in the tensor, this test checks
    // behavior of Max Unpooling layer only.
    Net net = readNet(findDataFile("dnn/tflite/hair_segmentation.tflite", false));
    net.setPreferableBackend(backend);
    net.setPreferableTarget(target);

    Mat input = imread(findDataFile("cv/shared/lena.png"));
    cvtColor(input, input, COLOR_BGR2RGBA);
    input = input.mul(Scalar(1, 1, 1, 0));
    input = blobFromImage(input, 1.0 / 255);
    testInputShapes(net, {input});
    net.setInput(input);

    std::vector<std::vector<Mat> > outs;
    net.forward(outs, {"p_re_lu_1", "max_pooling_with_argmax2d", "conv2d_86", "max_unpooling2d_2"});

    ASSERT_EQ(outs.size(), 4);
    ASSERT_EQ(outs[0].size(), 1);
    ASSERT_EQ(outs[1].size(), 2);
    ASSERT_EQ(outs[2].size(), 1);
    ASSERT_EQ(outs[3].size(), 1);
    Mat poolInp = outs[0][0];
    Mat poolOut = outs[1][0];
    Mat poolIds = outs[1][1];
    Mat unpoolInp = outs[2][0];
    Mat unpoolOut = outs[3][0];

    ASSERT_EQ(poolInp.size, unpoolOut.size);
    ASSERT_EQ(poolOut.size, poolIds.size);
    ASSERT_EQ(poolOut.size, unpoolInp.size);

    ASSERT_EQ(countNonZero(poolInp), poolInp.total());

    for (int c = 0; c < 32; ++c) {
        float *poolInpData = poolInp.ptr<float>(0, c);
        float *poolOutData = poolOut.ptr<float>(0, c);
        float *poolIdsData = poolIds.ptr<float>(0, c);
        float *unpoolInpData = unpoolInp.ptr<float>(0, c);
        float *unpoolOutData = unpoolOut.ptr<float>(0, c);
        for (int y = 0; y < 64; ++y) {
            for (int x = 0; x < 64; ++x) {
                int maxIdx = (y * 128 + x) * 2;
                std::vector<int> indices{maxIdx + 1, maxIdx + 128, maxIdx + 129};
                std::string errMsg = format("Channel %d, y: %d, x: %d", c, y, x);
                for (int idx : indices) {
                    if (poolInpData[idx] > poolInpData[maxIdx]) {
                        EXPECT_EQ(unpoolOutData[maxIdx], 0.0f) << errMsg;
                        maxIdx = idx;
                    }
                }
                EXPECT_EQ(poolInpData[maxIdx], poolOutData[y * 64 + x]) << errMsg;
                if (backend != DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) {
                    EXPECT_EQ(poolIdsData[y * 64 + x], (float)maxIdx) << errMsg;
                }
                EXPECT_EQ(unpoolOutData[maxIdx], unpoolInpData[y * 64 + x]) << errMsg;
            }
        }
    }
}

TEST_P(Test_TFLite, EfficientDet_int8) {
    if (target != DNN_TARGET_CPU || (backend != DNN_BACKEND_OPENCV &&
        backend != DNN_BACKEND_TIMVX && backend != DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)) {
        throw SkipTestException("Only OpenCV, TimVX and OpenVINO targets support INT8 on CPU");
    }
    Net net = readNet(findDataFile("dnn/tflite/coco_efficientdet_lite0_v1_1.0_quant_2021_09_06.tflite", false));
    net.setPreferableBackend(backend);
    net.setPreferableTarget(target);

    Mat img = imread(findDataFile("dnn/dog416.png"));
    Mat blob = blobFromImage(img, 1.0, Size(320, 320));

    net.setInput(blob);
    Mat out = net.forward();
    Mat_<float> ref({3, 7}, {
        0, 7, 0.62890625, 0.6014542579650879, 0.13300055265426636, 0.8977657556533813, 0.292389452457428,
        0, 17, 0.56640625, 0.15983937680721283, 0.35905322432518005, 0.5155506730079651, 0.9409466981887817,
        0, 1, 0.5, 0.14357104897499084, 0.2240825891494751, 0.7183101177215576, 0.9140362739562988
    });
    normAssertDetections(ref, out, "", 0.5, 0.05, 0.1);
}

TEST_P(Test_TFLite, replicate_by_pack) {
    double l1 = 0, lInf = 0;
    if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL)
    {
        l1 = 4e-4;
        lInf = 2e-3;
    }
    testLayer("replicate_by_pack", l1, lInf);
}

TEST_P(Test_TFLite, split) {
    testLayer("split");
}

TEST_P(Test_TFLite, fully_connected) {
    if (backend == DNN_BACKEND_VKCOM)
        applyTestTag(CV_TEST_TAG_DNN_SKIP_VULKAN);
    testLayer("fully_connected");
}

TEST_P(Test_TFLite, permute) {
    testLayer("permutation_3d");
    // Temporarily disabled as TFLiteConverter produces a incorrect graph in this case
    //testLayer("permutation_4d_0123");
    testLayer("permutation_4d_0132");
    testLayer("permutation_4d_0213");
    testLayer("permutation_4d_0231");
}

TEST_P(Test_TFLite, global_average_pooling_2d) {
    testLayer("global_average_pooling_2d");
}

TEST_P(Test_TFLite, global_max_pooling_2d) {
    testLayer("global_max_pooling_2d");
}

INSTANTIATE_TEST_CASE_P(/**/, Test_TFLite, dnnBackendsAndTargets());

}}  // namespace

#endif  // OPENCV_TEST_DNN_TFLITE