1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961
|
#+TITLE: OpenCV 4.4 Graph API
#+AUTHOR: Dmitry Matveev\newline Intel Corporation
#+OPTIONS: H:2 toc:t num:t
#+LATEX_CLASS: beamer
#+LATEX_CLASS_OPTIONS: [presentation]
#+LATEX_HEADER: \usepackage{transparent} \usepackage{listings} \usepackage{pgfplots} \usepackage{mtheme.sty/beamerthememetropolis}
#+LATEX_HEADER: \setbeamertemplate{frame footer}{OpenCV 4.4 G-API: Overview and programming by example}
#+BEAMER_HEADER: \subtitle{Overview and programming by example}
#+BEAMER_HEADER: \titlegraphic{ \vspace*{3cm}\hspace*{5cm} {\transparent{0.2}\includegraphics[height=\textheight]{ocv_logo.eps}}}
#+COLUMNS: %45ITEM %10BEAMER_ENV(Env) %10BEAMER_ACT(Act) %4BEAMER_COL(Col) %8BEAMER_OPT(Opt)
* G-API: What is, why, what's for?
** OpenCV evolution in one slide
*** Version 1.x -- Library inception
- Just a set of CV functions + helpers around (visualization, IO);
*** Version 2.x -- Library rewrite
- OpenCV meets C++, ~cv::Mat~ replaces ~IplImage*~;
*** Version 3.0 -- Welcome Transparent API (T-API)
- ~cv::UMat~ is introduced as a /transparent/ addition to
~cv::Mat~;
- With ~cv::UMat~, an OpenCL kernel can be enqeueud instead of
immediately running C code;
- ~cv::UMat~ data is kept on a /device/ until explicitly queried.
** OpenCV evolution in one slide (cont'd)
# FIXME: Learn proper page-breaking!
*** Version 4.0 -- Welcome Graph API (G-API)
- A new separate module (not a full library rewrite);
- A framework (or even a /meta/-framework);
- Usage model:
- /Express/ an image/vision processing graph and then /execute/ it;
- Fine-tune execution without changes in the graph;
- Similar to Halide -- separates logic from
platform details.
- More than Halide:
- Kernels can be written in unconstrained platform-native code;
- Halide can serve as a backend (one of many).
** OpenCV evolution in one slide (cont'd)
# FIXME: Learn proper page-breaking!
*** Version 4.2 -- New horizons
- Introduced in-graph inference via OpenVINO™ Toolkit;
- Introduced video-oriented Streaming execution mode;
- Extended focus from individual image processing to the full
application pipeline optimization.
*** Version 4.4 -- More on video
- Introduced a notion of stateful kernels;
- The road to object tracking, background subtraction, etc. in the
graph;
- Added more video-oriented operations (feature detection, Optical
flow).
** Why G-API?
*** Why introduce a new execution model?
- Ultimately it is all about optimizations;
- or at least about a /possibility/ to optimize;
- A CV algorithm is usually not a single function call, but a
composition of functions;
- Different models operate at different levels of knowledge on the
algorithm (problem) we run.
** Why G-API? (cont'd)
# FIXME: Learn proper page-breaking!
*** Why introduce a new execution model?
- *Traditional* -- every function can be optimized (e.g. vectorized)
and parallelized, the rest is up to programmer to care about.
- *Queue-based* -- kernels are enqueued dynamically with no guarantee
where the end is or what is called next;
- *Graph-based* -- nearly all information is there, some compiler
magic can be done!
** What is G-API for?
*** Bring the value of graph model with OpenCV where it makes sense:
- *Memory consumption* can be reduced dramatically;
- *Memory access* can be optimized to maximize cache reuse;
- *Parallelism* can be applied automatically where it is hard to do
it manually;
- It also becomes more efficient when working with graphs;
- *Heterogeneity* gets extra benefits like:
- Avoiding unnecessary data transfers;
- Shadowing transfer costs with parallel host co-execution;
- Improving system throughput with frame-level pipelining.
* Programming with G-API
** G-API Basics
*** G-API Concepts
- *Graphs* are built by applying /operations/ to /data objects/;
- API itself has no "graphs", it is expression-based instead;
- *Data objects* do not hold actual data, only capture /dependencies/;
- *Operations* consume and produce data objects.
- A graph is defined by specifying its /boundaries/ with data objects:
- What data objects are /inputs/ to the graph?
- What are its /outputs/?
** The code is worth a thousand words
:PROPERTIES:
:BEAMER_opt: shrink=42
:END:
#+BEGIN_SRC C++
#include <opencv2/gapi.hpp> // G-API framework header
#include <opencv2/gapi/imgproc.hpp> // cv::gapi::blur()
#include <opencv2/highgui.hpp> // cv::imread/imwrite
int main(int argc, char *argv[]) {
if (argc < 3) return 1;
cv::GMat in; // Express the graph:
cv::GMat out = cv::gapi::blur(in, cv::Size(3,3)); // `out` is a result of `blur` of `in`
cv::Mat in_mat = cv::imread(argv[1]); // Get the real data
cv::Mat out_mat; // Output buffer (may be empty)
cv::GComputation(cv::GIn(in), cv::GOut(out)) // Declare a graph from `in` to `out`
.apply(cv::gin(in_mat), cv::gout(out_mat)); // ...and run it immediately
cv::imwrite(argv[2], out_mat); // Save the result
return 0;
}
#+END_SRC
** The code is worth a thousand words
:PROPERTIES:
:BEAMER_opt: shrink=42
:END:
*** Traditional OpenCV :B_block:BMCOL:
:PROPERTIES:
:BEAMER_env: block
:BEAMER_col: 0.45
:END:
#+BEGIN_SRC C++
#include <opencv2/core.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>
int main(int argc, char *argv[]) {
using namespace cv;
if (argc != 3) return 1;
Mat in_mat = imread(argv[1]);
Mat gx, gy;
Sobel(in_mat, gx, CV_32F, 1, 0);
Sobel(in_mat, gy, CV_32F, 0, 1);
Mat mag, out_mat;
sqrt(gx.mul(gx) + gy.mul(gy), mag);
mag.convertTo(out_mat, CV_8U);
imwrite(argv[2], out_mat);
return 0;
}
#+END_SRC
*** OpenCV G-API :B_block:BMCOL:
:PROPERTIES:
:BEAMER_env: block
:BEAMER_col: 0.5
:END:
#+BEGIN_SRC C++
#include <opencv2/gapi.hpp>
#include <opencv2/gapi/core.hpp>
#include <opencv2/gapi/imgproc.hpp>
#include <opencv2/highgui.hpp>
int main(int argc, char *argv[]) {
using namespace cv;
if (argc != 3) return 1;
GMat in;
GMat gx = gapi::Sobel(in, CV_32F, 1, 0);
GMat gy = gapi::Sobel(in, CV_32F, 0, 1);
GMat mag = gapi::sqrt( gapi::mul(gx, gx)
+ gapi::mul(gy, gy));
GMat out = gapi::convertTo(mag, CV_8U);
GComputation sobel(GIn(in), GOut(out));
Mat in_mat = imread(argv[1]), out_mat;
sobel.apply(in_mat, out_mat);
imwrite(argv[2], out_mat);
return 0;
}
#+END_SRC
** The code is worth a thousand words (cont'd)
# FIXME: sections!!!
*** What we have just learned?
- G-API functions mimic their traditional OpenCV ancestors;
- No real data is required to construct a graph;
- Graph construction and graph execution are separate steps.
*** What else?
- Graph is first /expressed/ and then /captured/ in an object;
- Graph constructor defines /protocol/; user can pass vectors of
inputs/outputs like
#+BEGIN_SRC C++
cv::GComputation(cv::GIn(...), cv::GOut(...))
#+END_SRC
- Calls to ~.apply()~ must conform to graph's protocol
** On data objects
Graph *protocol* defines what arguments a computation was defined on
(both inputs and outputs), and what are the *shapes* (or types) of
those arguments:
| *Shape* | *Argument* | Size |
|--------------+------------------+-----------------------------|
| ~GMat~ | ~Mat~ | Static; defined during |
| | | graph compilation |
|--------------+------------------+-----------------------------|
| ~GScalar~ | ~Scalar~ | 4 x ~double~ |
|--------------+------------------+-----------------------------|
| ~GArray<T>~ | ~std::vector<T>~ | Dynamic; defined in runtime |
|--------------+------------------+-----------------------------|
| ~GOpaque<T>~ | ~T~ | Static, ~sizeof(T)~ |
~GScalar~ may be value-initialized at construction time to allow
expressions like ~GMat a = 2*(b + 1)~.
** On operations and kernels
:PROPERTIES:
:BEAMER_opt: shrink=22
:END:
*** :B_block:BMCOL:
:PROPERTIES:
:BEAMER_env: block
:BEAMER_col: 0.45
:END:
- Graphs are built with *Operations* over virtual *Data*;
- *Operations* define interfaces (literally);
- *Kernels* are implementations to *Operations* (like in OOP);
- An *Operation* is platform-agnostic, a *kernel* is not;
- *Kernels* are implemented for *Backends*, the latter provide
APIs to write kernels;
- Users can /add/ their *own* operations and kernels,
and also /redefine/ "standard" kernels their *own* way.
*** :B_block:BMCOL:
:PROPERTIES:
:BEAMER_env: block
:BEAMER_col: 0.45
:END:
#+BEGIN_SRC dot :file "000-ops-kernels.eps" :cmdline "-Kdot -Teps"
digraph G {
node [shape=box];
rankdir=BT;
Gr [label="Graph"];
Op [label="Operation\nA"];
{rank=same
Impl1 [label="Kernel\nA:2"];
Impl2 [label="Kernel\nA:1"];
}
Op -> Gr [dir=back, label="'consists of'"];
Impl1 -> Op [];
Impl2 -> Op [label="'is implemented by'"];
node [shape=note,style=dashed];
{rank=same
Op;
CommentOp [label="Abstract:\ndeclared via\nG_API_OP()"];
}
{rank=same
Comment1 [label="Platform:\ndefined with\nOpenCL backend"];
Comment2 [label="Platform:\ndefined with\nOpenCV backend"];
}
CommentOp -> Op [constraint=false, style=dashed, arrowhead=none];
Comment1 -> Impl1 [style=dashed, arrowhead=none];
Comment2 -> Impl2 [style=dashed, arrowhead=none];
}
#+END_SRC
** On operations and kernels (cont'd)
*** Defining an operation
- A type name (every operation is a C++ type);
- Operation signature (similar to ~std::function<>~);
- Operation identifier (a string);
- Metadata callback -- describe what is the output value format(s),
given the input and arguments.
- Use ~OpType::on(...)~ to use a new kernel ~OpType~ to construct graphs.
#+LaTeX: {\footnotesize
#+BEGIN_SRC C++
G_API_OP(GSqrt,<GMat(GMat)>,"org.opencv.core.math.sqrt") {
static GMatDesc outMeta(GMatDesc in) { return in; }
};
#+END_SRC
#+LaTeX: }
** On operations and kernels (cont'd)
*** ~GSqrt~ vs. ~cv::gapi::sqrt()~
- How a *type* relates to a *functions* from the example?
- These functions are just wrappers over ~::on~:
#+LaTeX: {\scriptsize
#+BEGIN_SRC C++
G_API_OP(GSqrt,<GMat(GMat)>,"org.opencv.core.math.sqrt") {
static GMatDesc outMeta(GMatDesc in) { return in; }
};
GMat gapi::sqrt(const GMat& src) { return GSqrt::on(src); }
#+END_SRC
#+LaTeX: }
- Why -- Doxygen, default parameters, 1:n mapping:
#+LaTeX: {\scriptsize
#+BEGIN_SRC C++
cv::GMat custom::unsharpMask(const cv::GMat &src,
const int sigma,
const float strength) {
cv::GMat blurred = cv::gapi::medianBlur(src, sigma);
cv::GMat laplacian = cv::gapi::Laplacian(blurred, CV_8U);
return (src - (laplacian * strength));
}
#+END_SRC
#+LaTeX: }
** On operations and kernels (cont'd)
*** Implementing an operation
- Depends on the backend and its API;
- Common part for all backends: refer to operation being implemented
using its /type/.
*** OpenCV backend
- OpenCV backend is the default one: OpenCV kernel is a wrapped OpenCV
function:
#+LaTeX: {\footnotesize
#+BEGIN_SRC C++
GAPI_OCV_KERNEL(GCPUSqrt, cv::gapi::core::GSqrt) {
static void run(const cv::Mat& in, cv::Mat &out) {
cv::sqrt(in, out);
}
};
#+END_SRC
#+LaTeX: }
** Operations and Kernels (cont'd)
# FIXME!!!
*** Fluid backend
- Fluid backend operates with row-by-row kernels and schedules its
execution to optimize data locality:
#+LaTeX: {\footnotesize
#+BEGIN_SRC C++
GAPI_FLUID_KERNEL(GFluidSqrt, cv::gapi::core::GSqrt, false) {
static const int Window = 1;
static void run(const View &in, Buffer &out) {
hal::sqrt32f(in .InLine <float>(0)
out.OutLine<float>(0),
out.length());
}
};
#+END_SRC
#+LaTeX: }
- Note ~run~ changes signature but still is derived from the operation
signature.
** Operations and Kernels (cont'd)
*** Specifying which kernels to use
- Graph execution model is defined by kernels which are available/used;
- Kernels can be specified via the graph compilation arguments:
#+LaTeX: {\footnotesize
#+BEGIN_SRC C++
#include <opencv2/gapi/fluid/core.hpp>
#include <opencv2/gapi/fluid/imgproc.hpp>
...
auto pkg = cv::gapi::combine(cv::gapi::core::fluid::kernels(),
cv::gapi::imgproc::fluid::kernels());
sobel.apply(in_mat, out_mat, cv::compile_args(pkg));
#+END_SRC
#+LaTeX: }
- Users can combine kernels of different backends and G-API will partition
the execution among those automatically.
** Heterogeneity in G-API
:PROPERTIES:
:BEAMER_opt: shrink=35
:END:
*** Automatic subgraph partitioning in G-API
*** :B_block:BMCOL:
:PROPERTIES:
:BEAMER_env: block
:BEAMER_col: 0.18
:END:
#+BEGIN_SRC dot :file "010-hetero-init.eps" :cmdline "-Kdot -Teps"
digraph G {
rankdir=TB;
ranksep=0.3;
node [shape=box margin=0 height=0.25];
A; B; C;
node [shape=ellipse];
GMat0;
GMat1;
GMat2;
GMat3;
GMat0 -> A -> GMat1 -> B -> GMat2;
GMat2 -> C;
GMat0 -> C -> GMat3
subgraph cluster {style=invis; A; GMat1; B; GMat2; C};
}
#+END_SRC
The initial graph: operations are not resolved yet.
*** :B_block:BMCOL:
:PROPERTIES:
:BEAMER_env: block
:BEAMER_col: 0.18
:END:
#+BEGIN_SRC dot :file "011-hetero-homo.eps" :cmdline "-Kdot -Teps"
digraph G {
rankdir=TB;
ranksep=0.3;
node [shape=box margin=0 height=0.25];
A; B; C;
node [shape=ellipse];
GMat0;
GMat1;
GMat2;
GMat3;
GMat0 -> A -> GMat1 -> B -> GMat2;
GMat2 -> C;
GMat0 -> C -> GMat3
subgraph cluster {style=filled;color=azure2; A; GMat1; B; GMat2; C};
}
#+END_SRC
All operations are handled by the same backend.
*** :B_block:BMCOL:
:PROPERTIES:
:BEAMER_env: block
:BEAMER_col: 0.18
:END:
#+BEGIN_SRC dot :file "012-hetero-a.eps" :cmdline "-Kdot -Teps"
digraph G {
rankdir=TB;
ranksep=0.3;
node [shape=box margin=0 height=0.25];
A; B; C;
node [shape=ellipse];
GMat0;
GMat1;
GMat2;
GMat3;
GMat0 -> A -> GMat1 -> B -> GMat2;
GMat2 -> C;
GMat0 -> C -> GMat3
subgraph cluster_1 {style=filled;color=azure2; A; GMat1; B; }
subgraph cluster_2 {style=filled;color=ivory2; C};
}
#+END_SRC
~A~ & ~B~ are of backend ~1~, ~C~ is of backend ~2~.
*** :B_block:BMCOL:
:PROPERTIES:
:BEAMER_env: block
:BEAMER_col: 0.18
:END:
#+BEGIN_SRC dot :file "013-hetero-b.eps" :cmdline "-Kdot -Teps"
digraph G {
rankdir=TB;
ranksep=0.3;
node [shape=box margin=0 height=0.25];
A; B; C;
node [shape=ellipse];
GMat0;
GMat1;
GMat2;
GMat3;
GMat0 -> A -> GMat1 -> B -> GMat2;
GMat2 -> C;
GMat0 -> C -> GMat3
subgraph cluster_1 {style=filled;color=azure2; A};
subgraph cluster_2 {style=filled;color=ivory2; B};
subgraph cluster_3 {style=filled;color=azure2; C};
}
#+END_SRC
~A~ & ~C~ are of backend ~1~, ~B~ is of backend ~2~.
** Heterogeneity in G-API
*** Heterogeneity summary
- G-API automatically partitions its graph in subgraphs (called "islands")
based on the available kernels;
- Adjacent kernels taken from the same backend are "fused" into the same
"island";
- G-API implements a two-level execution model:
- Islands are executed at the top level by a G-API's *Executor*;
- Island internals are run at the bottom level by its *Backend*;
- G-API fully delegates the low-level execution and memory management to backends.
* Inference and Streaming
** Inference with G-API
*** In-graph inference example
- Starting with OpencV 4.2 (2019), G-API allows to integrate ~infer~
operations into the graph:
#+LaTeX: {\scriptsize
#+BEGIN_SRC C++
G_API_NET(ObjDetect, <cv::GMat(cv::GMat)>, "pdf.example.od");
cv::GMat in;
cv::GMat blob = cv::gapi::infer<ObjDetect>(bgr);
cv::GOpaque<cv::Size> size = cv::gapi::streaming::size(bgr);
cv::GArray<cv::Rect> objs = cv::gapi::streaming::parseSSD(blob, size);
cv::GComputation pipelne(cv::GIn(in), cv::GOut(objs));
#+END_SRC
#+LaTeX: }
- Starting with OpenCV 4.5 (2020), G-API will provide more streaming-
and NN-oriented operations out of the box.
** Inference with G-API
*** What is the difference?
- ~ObjDetect~ is not an operation, ~cv::gapi::infer<T>~ is;
- ~cv::gapi::infer<T>~ is a *generic* operation, where ~T=ObjDetect~ describes
the calling convention:
- How many inputs the network consumes,
- How many outputs the network produces.
- Inference data types are ~GMat~ only:
- Representing an image, then preprocessed automatically;
- Representing a blob (n-dimensional ~Mat~), then passed as-is.
- Inference *backends* only need to implement a single generic operation ~infer~.
** Inference with G-API
*** But how does it run?
- Since ~infer~ is an *Operation*, backends may provide *Kernels* implementing it;
- The only publicly available inference backend now is *OpenVINO™*:
- Brings its ~infer~ kernel atop of the Inference Engine;
- NN model data is passed through G-API compile arguments (like kernels);
- Every NN backend provides its own structure to configure the network (like
a kernel API).
** Inference with G-API
*** Passing OpenVINO™ parameters to G-API
- ~ObjDetect~ example:
#+LaTeX: {\footnotesize
#+BEGIN_SRC C++
auto face_net = cv::gapi::ie::Params<ObjDetect> {
face_xml_path, // path to the topology IR
face_bin_path, // path to the topology weights
face_device_string, // OpenVINO plugin (device) string
};
auto networks = cv::gapi::networks(face_net);
pipeline.compile(.., cv::compile_args(..., networks));
#+END_SRC
#+LaTeX: }
- ~AgeGender~ requires binding Op's outputs to NN layers:
#+LaTeX: {\footnotesize
#+BEGIN_SRC C++
auto age_net = cv::gapi::ie::Params<AgeGender> {
...
}.cfgOutputLayers({"age_conv3", "prob"}); // array<string,2> !
#+END_SRC
#+LaTeX: }
** Streaming with G-API
#+BEGIN_SRC dot :file 020-fd-demo.eps :cmdline "-Kdot -Teps"
digraph {
rankdir=LR;
node [shape=box];
cap [label=Capture];
dec [label=Decode];
res [label=Resize];
cnn [label=Infer];
vis [label=Visualize];
cap -> dec;
dec -> res;
res -> cnn;
cnn -> vis;
}
#+END_SRC
Anatomy of a regular video analytics application
** Streaming with G-API
#+BEGIN_SRC dot :file 021-fd-serial.eps :cmdline "-Kdot -Teps"
digraph {
node [shape=box margin=0 width=0.3 height=0.4]
nodesep=0.2;
rankdir=LR;
subgraph cluster0 {
colorscheme=blues9
pp [label="..." shape=plaintext];
v0 [label=V];
label="Frame N-1";
color=7;
}
subgraph cluster1 {
colorscheme=blues9
c1 [label=C];
d1 [label=D];
r1 [label=R];
i1 [label=I];
v1 [label=V];
label="Frame N";
color=6;
}
subgraph cluster2 {
colorscheme=blues9
c2 [label=C];
nn [label="..." shape=plaintext];
label="Frame N+1";
color=5;
}
c1 -> d1 -> r1 -> i1 -> v1;
pp-> v0;
v0 -> c1 [style=invis];
v1 -> c2 [style=invis];
c2 -> nn;
}
#+END_SRC
Serial execution of the sample video analytics application
** Streaming with G-API
:PROPERTIES:
:BEAMER_opt: shrink
:END:
#+BEGIN_SRC dot :file 022-fd-pipelined.eps :cmdline "-Kdot -Teps"
digraph {
nodesep=0.2;
ranksep=0.2;
node [margin=0 width=0.4 height=0.2];
node [shape=plaintext]
Camera [label="Camera:"];
GPU [label="GPU:"];
FPGA [label="FPGA:"];
CPU [label="CPU:"];
Time [label="Time:"];
t6 [label="T6"];
t7 [label="T7"];
t8 [label="T8"];
t9 [label="T9"];
t10 [label="T10"];
tnn [label="..."];
node [shape=box margin=0 width=0.4 height=0.4 colorscheme=blues9]
node [color=9] V3;
node [color=8] F4; V4;
node [color=7] DR5; F5; V5;
node [color=6] C6; DR6; F6; V6;
node [color=5] C7; DR7; F7; V7;
node [color=4] C8; DR8; F8;
node [color=3] C9; DR9;
node [color=2] C10;
{rank=same; rankdir=LR; Camera C6 C7 C8 C9 C10}
Camera -> C6 -> C7 -> C8 -> C9 -> C10 [style=invis];
{rank=same; rankdir=LR; GPU DR5 DR6 DR7 DR8 DR9}
GPU -> DR5 -> DR6 -> DR7 -> DR8 -> DR9 [style=invis];
C6 -> DR5 [style=invis];
C6 -> DR6 [constraint=false];
C7 -> DR7 [constraint=false];
C8 -> DR8 [constraint=false];
C9 -> DR9 [constraint=false];
{rank=same; rankdir=LR; FPGA F4 F5 F6 F7 F8}
FPGA -> F4 -> F5 -> F6 -> F7 -> F8 [style=invis];
DR5 -> F4 [style=invis];
DR5 -> F5 [constraint=false];
DR6 -> F6 [constraint=false];
DR7 -> F7 [constraint=false];
DR8 -> F8 [constraint=false];
{rank=same; rankdir=LR; CPU V3 V4 V5 V6 V7}
CPU -> V3 -> V4 -> V5 -> V6 -> V7 [style=invis];
F4 -> V3 [style=invis];
F4 -> V4 [constraint=false];
F5 -> V5 [constraint=false];
F6 -> V6 [constraint=false];
F7 -> V7 [constraint=false];
{rank=same; rankdir=LR; Time t6 t7 t8 t9 t10 tnn}
Time -> t6 -> t7 -> t8 -> t9 -> t10 -> tnn [style=invis];
CPU -> Time [style=invis];
V3 -> t6 [style=invis];
V4 -> t7 [style=invis];
V5 -> t8 [style=invis];
V6 -> t9 [style=invis];
V7 -> t10 [style=invis];
}
#+END_SRC
Pipelined execution for the video analytics application
** Streaming with G-API: Example
**** Serial mode (4.0) :B_block:BMCOL:
:PROPERTIES:
:BEAMER_env: block
:BEAMER_col: 0.45
:END:
#+LaTeX: {\tiny
#+BEGIN_SRC C++
pipeline = cv::GComputation(...);
cv::VideoCapture cap(input);
cv::Mat in_frame;
std::vector<cv::Rect> out_faces;
while (cap.read(in_frame)) {
pipeline.apply(cv::gin(in_frame),
cv::gout(out_faces),
cv::compile_args(kernels,
networks));
// Process results
...
}
#+END_SRC
#+LaTeX: }
**** Streaming mode (since 4.2) :B_block:BMCOL:
:PROPERTIES:
:BEAMER_env: block
:BEAMER_col: 0.45
:END:
#+LaTeX: {\tiny
#+BEGIN_SRC C++
pipeline = cv::GComputation(...);
auto in_src = cv::gapi::wip::make_src
<cv::gapi::wip::GCaptureSource>(input)
auto cc = pipeline.compileStreaming
(cv::compile_args(kernels, networks))
cc.setSource(cv::gin(in_src));
cc.start();
std::vector<cv::Rect> out_faces;
while (cc.pull(cv::gout(out_faces))) {
// Process results
...
}
#+END_SRC
#+LaTeX: }
**** More information
#+LaTeX: {\footnotesize
https://opencv.org/hybrid-cv-dl-pipelines-with-opencv-4-4-g-api/
#+LaTeX: }
* Latest features
** Latest features
*** Python API
- Initial Python3 binding is available now in ~master~ (future 4.5);
- Only basic CV functionality is supported (~core~ & ~imgproc~ namespaces,
selecting backends);
- Adding more programmability, inference, and streaming is next.
** Latest features
*** Python API
#+LaTeX: {\footnotesize
#+BEGIN_SRC Python
import numpy as np
import cv2 as cv
sz = (1280, 720)
in1 = np.random.randint(0, 100, sz).astype(np.uint8)
in2 = np.random.randint(0, 100, sz).astype(np.uint8)
g_in1 = cv.GMat()
g_in2 = cv.GMat()
g_out = cv.gapi.add(g_in1, g_in2)
gr = cv.GComputation(g_in1, g_in2, g_out)
pkg = cv.gapi.core.fluid.kernels()
out = gr.apply(in1, in2, args=cv.compile_args(pkg))
#+END_SRC
#+LaTeX: }
* Understanding the "G-Effect"
** Understanding the "G-Effect"
*** What is "G-Effect"?
- G-API is not only an API, but also an /implementation/;
- i.e. it does some work already!
- We call "G-Effect" any measurable improvement which G-API demonstrates
against traditional methods;
- So far the list is:
- Memory consumption;
- Performance;
- Programmer efforts.
Note: in the following slides, all measurements are taken on
Intel\textregistered{} Core\texttrademark-i5 6600 CPU.
** Understanding the "G-Effect"
# FIXME
*** Memory consumption: Sobel Edge Detector
- G-API/Fluid backend is designed to minimize footprint:
#+LaTeX: {\footnotesize
| Input | OpenCV | G-API/Fluid | Factor |
| | MiB | MiB | Times |
|-------------+--------+-------------+--------|
| 512 x 512 | 17.33 | 0.59 | 28.9x |
| 640 x 480 | 20.29 | 0.62 | 32.8x |
| 1280 x 720 | 60.73 | 0.72 | 83.9x |
| 1920 x 1080 | 136.53 | 0.83 | 164.7x |
| 3840 x 2160 | 545.88 | 1.22 | 447.4x |
#+LaTeX: }
- The detector itself can be written manually in two ~for~
loops, but G-API covers cases more complex than that;
- OpenCV code requires changes to shrink footprint.
** Understanding the "G-Effect"
*** Performance: Sobel Edge Detector
- G-API/Fluid backend also optimizes cache reuse:
#+LaTeX: {\footnotesize
| Input | OpenCV | G-API/Fluid | Factor |
| | ms | ms | Times |
|-------------+--------+-------------+--------|
| 320 x 240 | 1.16 | 0.53 | 2.17x |
| 640 x 480 | 5.66 | 1.89 | 2.99x |
| 1280 x 720 | 17.24 | 5.26 | 3.28x |
| 1920 x 1080 | 39.04 | 12.29 | 3.18x |
| 3840 x 2160 | 219.57 | 51.22 | 4.29x |
#+LaTeX: }
- The more data is processed, the bigger "G-Effect" is.
** Understanding the "G-Effect"
*** Relative speed-up based on cache efficiency
#+BEGIN_LATEX
\begin{figure}
\begin{tikzpicture}
\begin{axis}[
xlabel={Image size},
ylabel={Relative speed-up},
nodes near coords,
width=0.8\textwidth,
xtick=data,
xticklabels={QVGA, VGA, HD, FHD, UHD},
height=4.5cm,
]
\addplot plot coordinates {(1, 1.0) (2, 1.38) (3, 1.51) (4, 1.46) (5, 1.97)};
\end{axis}
\end{tikzpicture}
\end{figure}
#+END_LATEX
The higher resolution is, the higher relative speed-up is (with
speed-up on QVGA taken as 1.0).
* Resources on G-API
** Resources on G-API
:PROPERTIES:
:BEAMER_opt: shrink
:END:
*** Repository
- https://github.com/opencv/opencv (see ~modules/gapi~)
*** Article
- https://opencv.org/hybrid-cv-dl-pipelines-with-opencv-4-4-g-api/
*** Documentation
- https://docs.opencv.org/4.4.0/d0/d1e/gapi.html
*** Tutorials
- https://docs.opencv.org/4.4.0/df/d7e/tutorial_table_of_content_gapi.html
* Thank you!
|