1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
|
#!/usr/bin/env python
import numpy as np
import cv2 as cv
import os
import sys
import unittest
from tests_common import NewOpenCVTests
try:
if sys.version_info[:2] < (3, 0):
raise unittest.SkipTest('Python 2.x is not supported')
# FIXME: FText isn't supported yet.
class gapi_render_test(NewOpenCVTests):
def __init__(self, *args):
super().__init__(*args)
self.size = (300, 300, 3)
# Rect
self.rect = (30, 30, 50, 50)
self.rcolor = (0, 255, 0)
self.rlt = cv.LINE_4
self.rthick = 2
self.rshift = 3
# Text
self.text = 'Hello, world!'
self.org = (100, 100)
self.ff = cv.FONT_HERSHEY_SIMPLEX
self.fs = 1.0
self.tthick = 2
self.tlt = cv.LINE_8
self.tcolor = (255, 255, 255)
self.blo = False
# Circle
self.center = (200, 200)
self.radius = 200
self.ccolor = (255, 255, 0)
self.cthick = 2
self.clt = cv.LINE_4
self.cshift = 1
# Line
self.pt1 = (50, 50)
self.pt2 = (200, 200)
self.lcolor = (0, 255, 128)
self.lthick = 5
self.llt = cv.LINE_8
self.lshift = 2
# Poly
self.pts = [(50, 100), (100, 200), (25, 250)]
self.pcolor = (0, 0, 255)
self.pthick = 3
self.plt = cv.LINE_4
self.pshift = 1
# Image
self.iorg = (150, 150)
img_path = self.find_file('cv/face/david2.jpg', [os.environ.get('OPENCV_TEST_DATA_PATH')])
self.img = cv.resize(cv.imread(img_path), (50, 50))
self.alpha = np.full(self.img.shape[:2], 0.8, dtype=np.float32)
# Mosaic
self.mos = (100, 100, 100, 100)
self.cell_sz = 25
self.decim = 0
# Render primitives
self.prims = [cv.gapi.wip.draw.Rect(self.rect, self.rcolor, self.rthick, self.rlt, self.rshift),
cv.gapi.wip.draw.Text(self.text, self.org, self.ff, self.fs, self.tcolor, self.tthick, self.tlt, self.blo),
cv.gapi.wip.draw.Circle(self.center, self.radius, self.ccolor, self.cthick, self.clt, self.cshift),
cv.gapi.wip.draw.Line(self.pt1, self.pt2, self.lcolor, self.lthick, self.llt, self.lshift),
cv.gapi.wip.draw.Mosaic(self.mos, self.cell_sz, self.decim),
cv.gapi.wip.draw.Image(self.iorg, self.img, self.alpha),
cv.gapi.wip.draw.Poly(self.pts, self.pcolor, self.pthick, self.plt, self.pshift)]
def cvt_nv12_to_yuv(self, y, uv):
h,w,_ = uv.shape
upsample_uv = cv.resize(uv, (h * 2, w * 2))
return cv.merge([y, upsample_uv])
def cvt_yuv_to_nv12(self, yuv, y_out, uv_out):
chs = cv.split(yuv, [y_out, None, None])
uv = cv.merge([chs[1], chs[2]])
uv_out = cv.resize(uv, (uv.shape[0] // 2, uv.shape[1] // 2), dst=uv_out)
return y_out, uv_out
def cvt_bgr_to_yuv_color(self, bgr):
y = bgr[2] * 0.299000 + bgr[1] * 0.587000 + bgr[0] * 0.114000;
u = bgr[2] * -0.168736 + bgr[1] * -0.331264 + bgr[0] * 0.500000 + 128;
v = bgr[2] * 0.500000 + bgr[1] * -0.418688 + bgr[0] * -0.081312 + 128;
return (y, u, v)
def blend_img(self, background, org, img, alpha):
x, y = org
h, w, _ = img.shape
roi_img = background[x:x+w, y:y+h, :]
img32f_w = cv.merge([alpha] * 3).astype(np.float32)
roi32f_w = np.full(roi_img.shape, 1.0, dtype=np.float32)
roi32f_w -= img32f_w
img32f = (img / 255).astype(np.float32)
roi32f = (roi_img / 255).astype(np.float32)
cv.multiply(img32f, img32f_w, dst=img32f)
cv.multiply(roi32f, roi32f_w, dst=roi32f)
roi32f += img32f
roi_img[...] = np.round(roi32f * 255)
# This is quite naive implementations used as a simple reference
# doesn't consider corner cases.
def draw_mosaic(self, img, mos, cell_sz, decim):
x,y,w,h = mos
mosaic_area = img[x:x+w, y:y+h, :]
for i in range(0, mosaic_area.shape[0], cell_sz):
for j in range(0, mosaic_area.shape[1], cell_sz):
cell_roi = mosaic_area[j:j+cell_sz, i:i+cell_sz, :]
s0, s1, s2 = cv.mean(cell_roi)[:3]
mosaic_area[j:j+cell_sz, i:i+cell_sz] = (round(s0), round(s1), round(s2))
def render_primitives_bgr_ref(self, img):
cv.rectangle(img, self.rect, self.rcolor, self.rthick, self.rlt, self.rshift)
cv.putText(img, self.text, self.org, self.ff, self.fs, self.tcolor, self.tthick, self.tlt, self.blo)
cv.circle(img, self.center, self.radius, self.ccolor, self.cthick, self.clt, self.cshift)
cv.line(img, self.pt1, self.pt2, self.lcolor, self.lthick, self.llt, self.lshift)
cv.fillPoly(img, np.expand_dims(np.array([self.pts]), axis=0), self.pcolor, self.plt, self.pshift)
self.draw_mosaic(img, self.mos, self.cell_sz, self.decim)
self.blend_img(img, self.iorg, self.img, self.alpha)
def render_primitives_nv12_ref(self, y_plane, uv_plane):
yuv = self.cvt_nv12_to_yuv(y_plane, uv_plane)
cv.rectangle(yuv, self.rect, self.cvt_bgr_to_yuv_color(self.rcolor), self.rthick, self.rlt, self.rshift)
cv.putText(yuv, self.text, self.org, self.ff, self.fs, self.cvt_bgr_to_yuv_color(self.tcolor), self.tthick, self.tlt, self.blo)
cv.circle(yuv, self.center, self.radius, self.cvt_bgr_to_yuv_color(self.ccolor), self.cthick, self.clt, self.cshift)
cv.line(yuv, self.pt1, self.pt2, self.cvt_bgr_to_yuv_color(self.lcolor), self.lthick, self.llt, self.lshift)
cv.fillPoly(yuv, np.expand_dims(np.array([self.pts]), axis=0), self.cvt_bgr_to_yuv_color(self.pcolor), self.plt, self.pshift)
self.draw_mosaic(yuv, self.mos, self.cell_sz, self.decim)
self.blend_img(yuv, self.iorg, cv.cvtColor(self.img, cv.COLOR_BGR2YUV), self.alpha)
self.cvt_yuv_to_nv12(yuv, y_plane, uv_plane)
def test_render_primitives_on_bgr_graph(self):
expected = np.zeros(self.size, dtype=np.uint8)
actual = np.array(expected, copy=True)
# OpenCV
self.render_primitives_bgr_ref(expected)
# G-API
g_in = cv.GMat()
g_prims = cv.GArray.Prim()
g_out = cv.gapi.wip.draw.render3ch(g_in, g_prims)
comp = cv.GComputation(cv.GIn(g_in, g_prims), cv.GOut(g_out))
actual = comp.apply(cv.gin(actual, self.prims))
self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF))
def test_render_primitives_on_bgr_function(self):
expected = np.zeros(self.size, dtype=np.uint8)
actual = np.array(expected, copy=True)
# OpenCV
self.render_primitives_bgr_ref(expected)
# G-API
cv.gapi.wip.draw.render(actual, self.prims)
self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF))
def test_render_primitives_on_nv12_graph(self):
y_expected = np.zeros((self.size[0], self.size[1], 1), dtype=np.uint8)
uv_expected = np.zeros((self.size[0] // 2, self.size[1] // 2, 2), dtype=np.uint8)
y_actual = np.array(y_expected, copy=True)
uv_actual = np.array(uv_expected, copy=True)
# OpenCV
self.render_primitives_nv12_ref(y_expected, uv_expected)
# G-API
g_y = cv.GMat()
g_uv = cv.GMat()
g_prims = cv.GArray.Prim()
g_out_y, g_out_uv = cv.gapi.wip.draw.renderNV12(g_y, g_uv, g_prims)
comp = cv.GComputation(cv.GIn(g_y, g_uv, g_prims), cv.GOut(g_out_y, g_out_uv))
y_actual, uv_actual = comp.apply(cv.gin(y_actual, uv_actual, self.prims))
self.assertEqual(0.0, cv.norm(y_expected, y_actual, cv.NORM_INF))
self.assertEqual(0.0, cv.norm(uv_expected, uv_actual, cv.NORM_INF))
def test_render_primitives_on_nv12_function(self):
y_expected = np.zeros((self.size[0], self.size[1], 1), dtype=np.uint8)
uv_expected = np.zeros((self.size[0] // 2, self.size[1] // 2, 2), dtype=np.uint8)
y_actual = np.array(y_expected, copy=True)
uv_actual = np.array(uv_expected, copy=True)
# OpenCV
self.render_primitives_nv12_ref(y_expected, uv_expected)
# G-API
cv.gapi.wip.draw.render(y_actual, uv_actual, self.prims)
self.assertEqual(0.0, cv.norm(y_expected, y_actual, cv.NORM_INF))
self.assertEqual(0.0, cv.norm(uv_expected, uv_actual, cv.NORM_INF))
except unittest.SkipTest as e:
message = str(e)
class TestSkip(unittest.TestCase):
def setUp(self):
self.skipTest('Skip tests: ' + message)
def test_skip():
pass
pass
if __name__ == '__main__':
NewOpenCVTests.bootstrap()
|