1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
|
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2020 Intel Corporation
#ifndef OPENCV_GAPI_VIDEO_PERF_TESTS_INL_HPP
#define OPENCV_GAPI_VIDEO_PERF_TESTS_INL_HPP
#include <iostream>
#include "gapi_video_perf_tests.hpp"
namespace opencv_test
{
using namespace perf;
//------------------------------------------------------------------------------
PERF_TEST_P_(BuildOptFlowPyramidPerfTest, TestPerformance)
{
std::vector<Mat> outPyrOCV, outPyrGAPI;
int outMaxLevelOCV = 0, outMaxLevelGAPI = 0;
Scalar outMaxLevelSc;
BuildOpticalFlowPyramidTestParams params;
std::tie(params.fileName, params.winSize,
params.maxLevel, params.withDerivatives,
params.pyrBorder, params.derivBorder,
params.tryReuseInputImage, params.compileArgs) = GetParam();
BuildOpticalFlowPyramidTestOutput outOCV { outPyrOCV, outMaxLevelOCV };
BuildOpticalFlowPyramidTestOutput outGAPI { outPyrGAPI, outMaxLevelGAPI };
GComputation c = runOCVnGAPIBuildOptFlowPyramid(*this, params, outOCV, outGAPI);
declare.in(in_mat1).out(outPyrGAPI);
TEST_CYCLE()
{
c.apply(cv::gin(in_mat1), cv::gout(outPyrGAPI, outMaxLevelSc));
}
outMaxLevelGAPI = static_cast<int>(outMaxLevelSc[0]);
// Comparison //////////////////////////////////////////////////////////////
compareOutputPyramids(outGAPI, outOCV);
SANITY_CHECK_NOTHING();
}
PERF_TEST_P_(OptFlowLKPerfTest, TestPerformance)
{
std::vector<cv::Point2f> outPtsOCV, outPtsGAPI, inPts;
std::vector<uchar> outStatusOCV, outStatusGAPI;
std::vector<float> outErrOCV, outErrGAPI;
OptFlowLKTestParams params;
std::tie(params.fileNamePattern, params.channels,
params.pointsNum, params.winSize, params.criteria,
params.compileArgs) = GetParam();
OptFlowLKTestOutput outOCV { outPtsOCV, outStatusOCV, outErrOCV };
OptFlowLKTestOutput outGAPI { outPtsGAPI, outStatusGAPI, outErrGAPI };
cv::GComputation c = runOCVnGAPIOptFlowLK(*this, inPts, params, outOCV, outGAPI);
declare.in(in_mat1, in_mat2, inPts).out(outPtsGAPI, outStatusGAPI, outErrGAPI);
TEST_CYCLE()
{
c.apply(cv::gin(in_mat1, in_mat2, inPts, std::vector<cv::Point2f>{ }),
cv::gout(outPtsGAPI, outStatusGAPI, outErrGAPI));
}
// Comparison //////////////////////////////////////////////////////////////
compareOutputsOptFlow(outGAPI, outOCV);
SANITY_CHECK_NOTHING();
}
//------------------------------------------------------------------------------
PERF_TEST_P_(OptFlowLKForPyrPerfTest, TestPerformance)
{
std::vector<cv::Mat> inPyr1, inPyr2;
std::vector<cv::Point2f> outPtsOCV, outPtsGAPI, inPts;
std::vector<uchar> outStatusOCV, outStatusGAPI;
std::vector<float> outErrOCV, outErrGAPI;
bool withDeriv = false;
OptFlowLKTestParams params;
std::tie(params.fileNamePattern, params.channels,
params.pointsNum, params.winSize, params.criteria,
withDeriv, params.compileArgs) = GetParam();
OptFlowLKTestInput<std::vector<cv::Mat>> in { inPyr1, inPyr2, inPts };
OptFlowLKTestOutput outOCV { outPtsOCV, outStatusOCV, outErrOCV };
OptFlowLKTestOutput outGAPI { outPtsGAPI, outStatusGAPI, outErrGAPI };
cv::GComputation c = runOCVnGAPIOptFlowLKForPyr(*this, in, params, withDeriv, outOCV, outGAPI);
declare.in(inPyr1, inPyr2, inPts).out(outPtsGAPI, outStatusGAPI, outErrGAPI);
TEST_CYCLE()
{
c.apply(cv::gin(inPyr1, inPyr2, inPts, std::vector<cv::Point2f>{ }),
cv::gout(outPtsGAPI, outStatusGAPI, outErrGAPI));
}
// Comparison //////////////////////////////////////////////////////////////
compareOutputsOptFlow(outGAPI, outOCV);
SANITY_CHECK_NOTHING();
}
PERF_TEST_P_(BuildPyr_CalcOptFlow_PipelinePerfTest, TestPerformance)
{
std::vector<Point2f> outPtsOCV, outPtsGAPI, inPts;
std::vector<uchar> outStatusOCV, outStatusGAPI;
std::vector<float> outErrOCV, outErrGAPI;
BuildOpticalFlowPyramidTestParams params;
params.pyrBorder = BORDER_DEFAULT;
params.derivBorder = BORDER_DEFAULT;
params.tryReuseInputImage = true;
std::tie(params.fileName, params.winSize,
params.maxLevel, params.withDerivatives,
params.compileArgs) = GetParam();
auto customKernel = gapi::kernels<GCPUMinScalar>();
auto kernels = gapi::combine(customKernel,
params.compileArgs[0].get<GKernelPackage>());
params.compileArgs = compile_args(kernels);
OptFlowLKTestOutput outOCV { outPtsOCV, outStatusOCV, outErrOCV };
OptFlowLKTestOutput outGAPI { outPtsGAPI, outStatusGAPI, outErrGAPI };
cv::GComputation c = runOCVnGAPIOptFlowPipeline(*this, params, outOCV, outGAPI, inPts);
declare.in(in_mat1, in_mat2, inPts).out(outPtsGAPI, outStatusGAPI, outErrGAPI);
TEST_CYCLE()
{
c.apply(cv::gin(in_mat1, in_mat2, inPts, std::vector<cv::Point2f>{ }),
cv::gout(outPtsGAPI, outStatusGAPI, outErrGAPI));
}
// Comparison //////////////////////////////////////////////////////////////
compareOutputsOptFlow(outGAPI, outOCV);
SANITY_CHECK_NOTHING();
}
//------------------------------------------------------------------------------
#ifdef HAVE_OPENCV_VIDEO
PERF_TEST_P_(BackgroundSubtractorPerfTest, TestPerformance)
{
namespace gvideo = cv::gapi::video;
gvideo::BackgroundSubtractorType opType;
std::string filePath = "";
bool detectShadows = false;
double learningRate = -1.;
std::size_t testNumFrames = 0;
cv::GCompileArgs compileArgs;
CompareMats cmpF;
std::tie(opType, filePath, detectShadows, learningRate, testNumFrames,
compileArgs, cmpF) = GetParam();
const int histLength = 500;
double thr = -1;
switch (opType)
{
case gvideo::TYPE_BS_MOG2:
{
thr = 16.;
break;
}
case gvideo::TYPE_BS_KNN:
{
thr = 400.;
break;
}
default:
FAIL() << "unsupported type of BackgroundSubtractor";
}
const gvideo::BackgroundSubtractorParams bsp(opType, histLength, thr, detectShadows,
learningRate);
// Retrieving frames
std::vector<cv::Mat> frames;
frames.reserve(testNumFrames);
{
cv::Mat frame;
cv::VideoCapture cap;
if (!cap.open(findDataFile(filePath)))
throw SkipTestException("Video file can not be opened");
for (std::size_t i = 0; i < testNumFrames && cap.read(frame); i++)
{
frames.push_back(frame);
}
}
GAPI_Assert(testNumFrames == frames.size() && "Can't read required number of frames");
// G-API graph declaration
cv::GMat in;
cv::GMat out = cv::gapi::BackgroundSubtractor(in, bsp);
cv::GComputation c(cv::GIn(in), cv::GOut(out));
auto cc = c.compile(cv::descr_of(frames[0]), std::move(compileArgs));
cv::Mat gapiForeground;
TEST_CYCLE()
{
cc.prepareForNewStream();
for (size_t i = 0; i < testNumFrames; i++)
{
cc(cv::gin(frames[i]), cv::gout(gapiForeground));
}
}
// OpenCV Background Subtractor declaration
cv::Ptr<cv::BackgroundSubtractor> pOCVBackSub;
if (opType == gvideo::TYPE_BS_MOG2)
pOCVBackSub = cv::createBackgroundSubtractorMOG2(histLength, thr, detectShadows);
else if (opType == gvideo::TYPE_BS_KNN)
pOCVBackSub = cv::createBackgroundSubtractorKNN(histLength, thr, detectShadows);
cv::Mat ocvForeground;
for (size_t i = 0; i < testNumFrames; i++)
{
pOCVBackSub->apply(frames[i], ocvForeground, learningRate);
}
// Validation
EXPECT_TRUE(cmpF(gapiForeground, ocvForeground));
SANITY_CHECK_NOTHING();
}
//------------------------------------------------------------------------------
inline void generateInputKalman(const int mDim, const MatType2& type,
const size_t testNumMeasurements, const bool receiveRandMeas,
std::vector<bool>& haveMeasurements,
std::vector<cv::Mat>& measurements)
{
cv::RNG& rng = cv::theRNG();
measurements.clear();
haveMeasurements = std::vector<bool>(testNumMeasurements, true);
for (size_t i = 0; i < testNumMeasurements; i++)
{
if (receiveRandMeas)
{
haveMeasurements[i] = rng(2u) == 1; // returns 0 or 1 - whether we have measurement
// at this iteration or not
} // if not - testing the slowest case in which we have measurements at every iteration
cv::Mat measurement = cv::Mat::zeros(mDim, 1, type);
if (haveMeasurements[i])
{
cv::randu(measurement, cv::Scalar::all(-1), cv::Scalar::all(1));
}
measurements.push_back(measurement.clone());
}
}
inline void generateInputKalman(const int mDim, const int cDim, const MatType2& type,
const size_t testNumMeasurements, const bool receiveRandMeas,
std::vector<bool>& haveMeasurements,
std::vector<cv::Mat>& measurements,
std::vector<cv::Mat>& ctrls)
{
generateInputKalman(mDim, type, testNumMeasurements, receiveRandMeas,
haveMeasurements, measurements);
ctrls.clear();
cv::Mat ctrl(cDim, 1, type);
for (size_t i = 0; i < testNumMeasurements; i++)
{
cv::randu(ctrl, cv::Scalar::all(-1), cv::Scalar::all(1));
ctrls.push_back(ctrl.clone());
}
}
PERF_TEST_P_(KalmanFilterControlPerfTest, TestPerformance)
{
MatType2 type = -1;
int dDim = -1, mDim = -1;
size_t testNumMeasurements = 0;
bool receiveRandMeas = true;
cv::GCompileArgs compileArgs;
std::tie(type, dDim, mDim, testNumMeasurements, receiveRandMeas, compileArgs) = GetParam();
const int cDim = 2;
cv::gapi::KalmanParams kp;
initKalmanParams(type, dDim, mDim, cDim, kp);
// Generating input
std::vector<bool> haveMeasurements;
std::vector<cv::Mat> measurements, ctrls;
generateInputKalman(mDim, cDim, type, testNumMeasurements, receiveRandMeas,
haveMeasurements, measurements, ctrls);
// G-API graph declaration
cv::GMat m, ctrl;
cv::GOpaque<bool> have_m;
cv::GMat out = cv::gapi::KalmanFilter(m, have_m, ctrl, kp);
cv::GComputation c(cv::GIn(m, have_m, ctrl), cv::GOut(out));
auto cc = c.compile(
cv::descr_of(cv::gin(cv::Mat(mDim, 1, type), true, cv::Mat(cDim, 1, type))),
std::move(compileArgs));
cv::Mat gapiKState(dDim, 1, type);
TEST_CYCLE()
{
cc.prepareForNewStream();
for (size_t i = 0; i < testNumMeasurements; i++)
{
bool hvMeas = haveMeasurements[i];
cc(cv::gin(measurements[i], hvMeas, ctrls[i]), cv::gout(gapiKState));
}
}
// OpenCV reference KalmanFilter initialization
cv::KalmanFilter ocvKalman(dDim, mDim, cDim, type);
initKalmanFilter(kp, true, ocvKalman);
cv::Mat ocvKState(dDim, 1, type);
for (size_t i = 0; i < testNumMeasurements; i++)
{
ocvKState = ocvKalman.predict(ctrls[i]);
if (haveMeasurements[i])
ocvKState = ocvKalman.correct(measurements[i]);
}
// Validation
EXPECT_TRUE(AbsExact().to_compare_f()(gapiKState, ocvKState));
SANITY_CHECK_NOTHING();
}
PERF_TEST_P_(KalmanFilterNoControlPerfTest, TestPerformance)
{
MatType2 type = -1;
int dDim = -1, mDim = -1;
size_t testNumMeasurements = 0;
bool receiveRandMeas = true;
cv::GCompileArgs compileArgs;
std::tie(type, dDim, mDim, testNumMeasurements, receiveRandMeas, compileArgs) = GetParam();
const int cDim = 0;
cv::gapi::KalmanParams kp;
initKalmanParams(type, dDim, mDim, cDim, kp);
// Generating input
std::vector<bool> haveMeasurements;
std::vector<cv::Mat> measurements;
generateInputKalman(mDim, type, testNumMeasurements, receiveRandMeas,
haveMeasurements, measurements);
// G-API graph declaration
cv::GMat m;
cv::GOpaque<bool> have_m;
cv::GMat out = cv::gapi::KalmanFilter(m, have_m, kp);
cv::GComputation c(cv::GIn(m, have_m), cv::GOut(out));
auto cc = c.compile(cv::descr_of(cv::gin(cv::Mat(mDim, 1, type), true)),
std::move(compileArgs));
cv::Mat gapiKState(dDim, 1, type);
TEST_CYCLE()
{
cc.prepareForNewStream();
for (size_t i = 0; i < testNumMeasurements; i++)
{
bool hvMeas = haveMeasurements[i];
cc(cv::gin(measurements[i], hvMeas), cv::gout(gapiKState));
}
}
// OpenCV reference KalmanFilter declaration
cv::KalmanFilter ocvKalman(dDim, mDim, cDim, type);
initKalmanFilter(kp, false, ocvKalman);
cv::Mat ocvKState(dDim, 1, type);
for (size_t i = 0; i < testNumMeasurements; i++)
{
ocvKState = ocvKalman.predict();
if (haveMeasurements[i])
ocvKState = ocvKalman.correct(measurements[i]);
}
// Validation
EXPECT_TRUE(AbsExact().to_compare_f()(gapiKState, ocvKState));
SANITY_CHECK_NOTHING();
}
#endif // HAVE_OPENCV_VIDEO
} // opencv_test
#endif // OPENCV_GAPI_VIDEO_PERF_TESTS_INL_HPP
|