File: infer_single_roi.cpp

package info (click to toggle)
opencv 4.10.0%2Bdfsg-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 282,092 kB
  • sloc: cpp: 1,178,079; xml: 682,621; python: 49,092; lisp: 31,150; java: 25,469; ansic: 11,039; javascript: 6,085; sh: 1,214; cs: 601; perl: 494; objc: 210; makefile: 173
file content (202 lines) | stat: -rw-r--r-- 7,478 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
#include <algorithm>
#include <iostream>
#include <sstream>

#include <opencv2/imgproc.hpp>
#include <opencv2/imgcodecs.hpp>
#include <opencv2/gapi.hpp>
#include <opencv2/gapi/core.hpp>
#include <opencv2/gapi/imgproc.hpp>
#include <opencv2/gapi/infer.hpp>
#include <opencv2/gapi/render.hpp>
#include <opencv2/gapi/infer/ie.hpp>
#include <opencv2/gapi/cpu/gcpukernel.hpp>
#include <opencv2/gapi/streaming/cap.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/gapi/infer/parsers.hpp>

const std::string keys =
    "{ h help |                              | Print this help message }"
    "{ input  |                              | Path to the input video file }"
    "{ facem  | face-detection-adas-0001.xml | Path to OpenVINO IE face detection model (.xml) }"
    "{ faced  | CPU                          | Target device for face detection model (e.g. CPU, GPU, VPU, ...) }"
    "{ r roi  | -1,-1,-1,-1                  | Region of interest (ROI) to use for inference. Identified automatically when not set }";

namespace {

std::string weights_path(const std::string &model_path) {
    const auto EXT_LEN = 4u;
    const auto sz = model_path.size();
    CV_Assert(sz > EXT_LEN);

    auto ext = model_path.substr(sz - EXT_LEN);
    std::transform(ext.begin(), ext.end(), ext.begin(), [](unsigned char c){
            return static_cast<unsigned char>(std::tolower(c));
        });
    CV_Assert(ext == ".xml");
    return model_path.substr(0u, sz - EXT_LEN) + ".bin";
}

cv::util::optional<cv::Rect> parse_roi(const std::string &rc) {
    cv::Rect rv;
    char delim[3];

    std::stringstream is(rc);
    is >> rv.x >> delim[0] >> rv.y >> delim[1] >> rv.width >> delim[2] >> rv.height;
    if (is.bad()) {
        return cv::util::optional<cv::Rect>(); // empty value
    }
    const auto is_delim = [](char c) {
        return c == ',';
    };
    if (!std::all_of(std::begin(delim), std::end(delim), is_delim)) {
        return cv::util::optional<cv::Rect>(); // empty value

    }
    if (rv.x < 0 || rv.y < 0 || rv.width <= 0 || rv.height <= 0) {
        return cv::util::optional<cv::Rect>(); // empty value
    }
    return cv::util::make_optional(std::move(rv));
}

} // namespace

namespace custom {

G_API_NET(FaceDetector,   <cv::GMat(cv::GMat)>, "face-detector");

using GDetections = cv::GArray<cv::Rect>;
using GRect       = cv::GOpaque<cv::Rect>;
using GSize       = cv::GOpaque<cv::Size>;
using GPrims      = cv::GArray<cv::gapi::wip::draw::Prim>;

G_API_OP(LocateROI, <GRect(cv::GMat)>, "sample.custom.locate-roi") {
    static cv::GOpaqueDesc outMeta(const cv::GMatDesc &) {
        return cv::empty_gopaque_desc();
    }
};

G_API_OP(BBoxes, <GPrims(GDetections, GRect)>, "sample.custom.b-boxes") {
    static cv::GArrayDesc outMeta(const cv::GArrayDesc &, const cv::GOpaqueDesc &) {
        return cv::empty_array_desc();
    }
};

GAPI_OCV_KERNEL(OCVLocateROI, LocateROI) {
    // This is the place where we can run extra analytics
    // on the input image frame and select the ROI (region
    // of interest) where we want to detect our objects (or
    // run any other inference).
    //
    // Currently it doesn't do anything intelligent,
    // but only crops the input image to square (this is
    // the most convenient aspect ratio for detectors to use)

    static void run(const cv::Mat &in_mat, cv::Rect &out_rect) {

        // Identify the central point & square size (- some padding)
        const auto center = cv::Point{in_mat.cols/2, in_mat.rows/2};
        auto sqside = std::min(in_mat.cols, in_mat.rows);

        // Now build the central square ROI
        out_rect = cv::Rect{ center.x - sqside/2
                           , center.y - sqside/2
                           , sqside
                           , sqside
                           };
    }
};

GAPI_OCV_KERNEL(OCVBBoxes, BBoxes) {
    // This kernel converts the rectangles into G-API's
    // rendering primitives
    static void run(const std::vector<cv::Rect> &in_face_rcs,
                    const             cv::Rect  &in_roi,
                          std::vector<cv::gapi::wip::draw::Prim> &out_prims) {
        out_prims.clear();
        const auto cvt = [](const cv::Rect &rc, const cv::Scalar &clr) {
            return cv::gapi::wip::draw::Rect(rc, clr, 2);
        };
        out_prims.emplace_back(cvt(in_roi, CV_RGB(0,255,255))); // cyan
        for (auto &&rc : in_face_rcs) {
            out_prims.emplace_back(cvt(rc, CV_RGB(0,255,0)));   // green
        }
    }
};

} // namespace custom

int main(int argc, char *argv[])
{
    cv::CommandLineParser cmd(argc, argv, keys);
    if (cmd.has("help")) {
        cmd.printMessage();
        return 0;
    }

    // Prepare parameters first
    const std::string input = cmd.get<std::string>("input");
    const auto opt_roi = parse_roi(cmd.get<std::string>("roi"));

    const auto face_model_path = cmd.get<std::string>("facem");
    auto face_net = cv::gapi::ie::Params<custom::FaceDetector> {
        face_model_path,                 // path to topology IR
        weights_path(face_model_path),   // path to weights
        cmd.get<std::string>("faced"),   // device specifier
    };
    auto kernels = cv::gapi::kernels
        <custom::OCVLocateROI
        , custom::OCVBBoxes>();
    auto networks = cv::gapi::networks(face_net);

    // Now build the graph. The graph structure may vary
    // passed on the input parameters
    cv::GStreamingCompiled pipeline;
    auto inputs = cv::gin(cv::gapi::wip::make_src<cv::gapi::wip::GCaptureSource>(input));

    cv::GMat in;
    cv::GOpaque<cv::Size> sz = cv::gapi::streaming::size(in);
    if (opt_roi.has_value()) {
        // Use the value provided by user
        std::cout << "Will run inference for static region "
                  << opt_roi.value()
                  << " only"
                  << std::endl;
        cv::GOpaque<cv::Rect> in_roi;
        auto blob = cv::gapi::infer<custom::FaceDetector>(in_roi, in);
        cv::GArray<cv::Rect> rcs = cv::gapi::parseSSD(blob, sz, 0.5f, true, true);
        auto  out = cv::gapi::wip::draw::render3ch(in, custom::BBoxes::on(rcs, in_roi));
        pipeline  = cv::GComputation(cv::GIn(in, in_roi), cv::GOut(out))
            .compileStreaming(cv::compile_args(kernels, networks));

        // Since the ROI to detect is manual, make it part of the input vector
        inputs.push_back(cv::gin(opt_roi.value())[0]);
    } else {
        // Automatically detect ROI to infer. Make it output parameter
        std::cout << "ROI is not set or invalid. Locating it automatically"
                  << std::endl;
        cv::GOpaque<cv::Rect> roi = custom::LocateROI::on(in);
        auto blob = cv::gapi::infer<custom::FaceDetector>(roi, in);
        cv::GArray<cv::Rect> rcs = cv::gapi::parseSSD(blob, sz, 0.5f, true, true);
        auto  out = cv::gapi::wip::draw::render3ch(in, custom::BBoxes::on(rcs, roi));
        pipeline  = cv::GComputation(cv::GIn(in), cv::GOut(out))
            .compileStreaming(cv::compile_args(kernels, networks));
    }

    // The execution part
    pipeline.setSource(std::move(inputs));
    pipeline.start();

    cv::Mat out;
    size_t frames = 0u;
    cv::TickMeter tm;
    tm.start();
    while (pipeline.pull(cv::gout(out))) {
        cv::imshow("Out", out);
        cv::waitKey(1);
        ++frames;
    }
    tm.stop();
    std::cout << "Processed " << frames << " frames" << " (" << frames / tm.getTimeSec() << " FPS)" << std::endl;
    return 0;
}