1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
|
#include <algorithm>
#include <fstream>
#include <iostream>
#include <cctype>
#include <tuple>
#include <opencv2/imgproc.hpp>
#include <opencv2/gapi.hpp>
#include <opencv2/gapi/core.hpp>
#include <opencv2/gapi/cpu/gcpukernel.hpp>
#include <opencv2/gapi/infer/ie.hpp>
#include <opencv2/gapi/render.hpp>
#include <opencv2/gapi/streaming/onevpl/source.hpp>
#include <opencv2/highgui.hpp> // CommandLineParser
#include <opencv2/gapi/infer/parsers.hpp>
#ifdef HAVE_INF_ENGINE
#include <inference_engine.hpp> // ParamMap
#endif // HAVE_INF_ENGINE
#ifdef HAVE_DIRECTX
#ifdef HAVE_D3D11
// get rid of generate macro max/min/etc from DX side
#define D3D11_NO_HELPERS
#define NOMINMAX
#include <d3d11.h>
#undef NOMINMAX
#undef D3D11_NO_HELPERS
#endif // HAVE_D3D11
#endif // HAVE_DIRECTX
#ifdef __linux__
#if defined(HAVE_VA) || defined(HAVE_VA_INTEL)
#include "va/va.h"
#include "va/va_drm.h"
#include <fcntl.h>
#include <unistd.h>
#endif // defined(HAVE_VA) || defined(HAVE_VA_INTEL)
#endif // __linux__
const std::string about =
"This is an OpenCV-based version of oneVPLSource decoder example";
const std::string keys =
"{ h help | | Print this help message }"
"{ input | | Path to the input demultiplexed video file }"
"{ output | | Path to the output RAW video file. Use .avi extension }"
"{ facem | face-detection-adas-0001.xml | Path to OpenVINO IE face detection model (.xml) }"
"{ faced | GPU | Target device for face detection model (e.g. AUTO, GPU, VPU, ...) }"
"{ cfg_params | | Semicolon separated list of oneVPL mfxVariants which is used for configuring source (see `MFXSetConfigFilterProperty` by https://spec.oneapi.io/versions/latest/elements/oneVPL/source/index.html) }"
"{ streaming_queue_capacity | 1 | Streaming executor queue capacity. Calculated automatically if 0 }"
"{ frames_pool_size | 0 | OneVPL source applies this parameter as preallocated frames pool size}"
"{ vpp_frames_pool_size | 0 | OneVPL source applies this parameter as preallocated frames pool size for VPP preprocessing results}"
"{ roi | -1,-1,-1,-1 | Region of interest (ROI) to use for inference. Identified automatically when not set }"
"{ source_device | CPU | choose device for decoding }"
"{ preproc_device | | choose device for preprocessing }";
namespace {
bool is_gpu(const std::string &device_name) {
return device_name.find("GPU") != std::string::npos;
}
std::string get_weights_path(const std::string &model_path) {
const auto EXT_LEN = 4u;
const auto sz = model_path.size();
GAPI_Assert(sz > EXT_LEN);
auto ext = model_path.substr(sz - EXT_LEN);
std::transform(ext.begin(), ext.end(), ext.begin(), [](unsigned char c){
return static_cast<unsigned char>(std::tolower(c));
});
GAPI_Assert(ext == ".xml");
return model_path.substr(0u, sz - EXT_LEN) + ".bin";
}
// TODO: It duplicates infer_single_roi sample
cv::util::optional<cv::Rect> parse_roi(const std::string &rc) {
cv::Rect rv;
char delim[3];
std::stringstream is(rc);
is >> rv.x >> delim[0] >> rv.y >> delim[1] >> rv.width >> delim[2] >> rv.height;
if (is.bad()) {
return cv::util::optional<cv::Rect>(); // empty value
}
const auto is_delim = [](char c) {
return c == ',';
};
if (!std::all_of(std::begin(delim), std::end(delim), is_delim)) {
return cv::util::optional<cv::Rect>(); // empty value
}
if (rv.x < 0 || rv.y < 0 || rv.width <= 0 || rv.height <= 0) {
return cv::util::optional<cv::Rect>(); // empty value
}
return cv::util::make_optional(std::move(rv));
}
#ifdef HAVE_DIRECTX
#ifdef HAVE_D3D11
// Since ATL headers might not be available on specific MSVS Build Tools
// we use simple `CComPtr` implementation like as `ComPtrGuard`
// which is not supposed to be the full functional replacement of `CComPtr`
// and it uses as RAII to make sure utilization is correct
template <typename COMNonManageableType>
void release(COMNonManageableType *ptr) {
if (ptr) {
ptr->Release();
}
}
template <typename COMNonManageableType>
using ComPtrGuard = std::unique_ptr<COMNonManageableType, decltype(&release<COMNonManageableType>)>;
template <typename COMNonManageableType>
ComPtrGuard<COMNonManageableType> createCOMPtrGuard(COMNonManageableType *ptr = nullptr) {
return ComPtrGuard<COMNonManageableType> {ptr, &release<COMNonManageableType>};
}
using AccelParamsType = std::tuple<ComPtrGuard<ID3D11Device>, ComPtrGuard<ID3D11DeviceContext>>;
AccelParamsType create_device_with_ctx(IDXGIAdapter* adapter) {
UINT flags = 0;
D3D_FEATURE_LEVEL feature_levels[] = { D3D_FEATURE_LEVEL_11_1,
D3D_FEATURE_LEVEL_11_0,
};
D3D_FEATURE_LEVEL featureLevel;
ID3D11Device* ret_device_ptr = nullptr;
ID3D11DeviceContext* ret_ctx_ptr = nullptr;
HRESULT err = D3D11CreateDevice(adapter, D3D_DRIVER_TYPE_UNKNOWN,
nullptr, flags,
feature_levels,
ARRAYSIZE(feature_levels),
D3D11_SDK_VERSION, &ret_device_ptr,
&featureLevel, &ret_ctx_ptr);
if (FAILED(err)) {
throw std::runtime_error("Cannot create D3D11CreateDevice, error: " +
std::to_string(HRESULT_CODE(err)));
}
return std::make_tuple(createCOMPtrGuard(ret_device_ptr),
createCOMPtrGuard(ret_ctx_ptr));
}
#endif // HAVE_D3D11
#endif // HAVE_DIRECTX
} // anonymous namespace
namespace custom {
G_API_NET(FaceDetector, <cv::GMat(cv::GMat)>, "face-detector");
using GDetections = cv::GArray<cv::Rect>;
using GRect = cv::GOpaque<cv::Rect>;
using GSize = cv::GOpaque<cv::Size>;
using GPrims = cv::GArray<cv::gapi::wip::draw::Prim>;
G_API_OP(ParseSSD, <GDetections(cv::GMat, GRect, GSize)>, "sample.custom.parse-ssd") {
static cv::GArrayDesc outMeta(const cv::GMatDesc &, const cv::GOpaqueDesc &, const cv::GOpaqueDesc &) {
return cv::empty_array_desc();
}
};
// TODO: It duplicates infer_single_roi sample
G_API_OP(LocateROI, <GRect(GSize)>, "sample.custom.locate-roi") {
static cv::GOpaqueDesc outMeta(const cv::GOpaqueDesc &) {
return cv::empty_gopaque_desc();
}
};
G_API_OP(BBoxes, <GPrims(GDetections, GRect)>, "sample.custom.b-boxes") {
static cv::GArrayDesc outMeta(const cv::GArrayDesc &, const cv::GOpaqueDesc &) {
return cv::empty_array_desc();
}
};
GAPI_OCV_KERNEL(OCVLocateROI, LocateROI) {
// This is the place where we can run extra analytics
// on the input image frame and select the ROI (region
// of interest) where we want to detect our objects (or
// run any other inference).
//
// Currently it doesn't do anything intelligent,
// but only crops the input image to square (this is
// the most convenient aspect ratio for detectors to use)
static void run(const cv::Size& in_size,
cv::Rect &out_rect) {
// Identify the central point & square size (- some padding)
const auto center = cv::Point{in_size.width/2, in_size.height/2};
auto sqside = std::min(in_size.width, in_size.height);
// Now build the central square ROI
out_rect = cv::Rect{ center.x - sqside/2
, center.y - sqside/2
, sqside
, sqside
};
}
};
GAPI_OCV_KERNEL(OCVBBoxes, BBoxes) {
// This kernel converts the rectangles into G-API's
// rendering primitives
static void run(const std::vector<cv::Rect> &in_face_rcs,
const cv::Rect &in_roi,
std::vector<cv::gapi::wip::draw::Prim> &out_prims) {
out_prims.clear();
const auto cvt = [](const cv::Rect &rc, const cv::Scalar &clr) {
return cv::gapi::wip::draw::Rect(rc, clr, 2);
};
out_prims.emplace_back(cvt(in_roi, CV_RGB(0,255,255))); // cyan
for (auto &&rc : in_face_rcs) {
out_prims.emplace_back(cvt(rc, CV_RGB(0,255,0))); // green
}
}
};
GAPI_OCV_KERNEL(OCVParseSSD, ParseSSD) {
static void run(const cv::Mat &in_ssd_result,
const cv::Rect &in_roi,
const cv::Size &in_parent_size,
std::vector<cv::Rect> &out_objects) {
const auto &in_ssd_dims = in_ssd_result.size;
GAPI_Assert(in_ssd_dims.dims() == 4u);
const int MAX_PROPOSALS = in_ssd_dims[2];
const int OBJECT_SIZE = in_ssd_dims[3];
GAPI_Assert(OBJECT_SIZE == 7); // fixed SSD object size
const cv::Size up_roi = in_roi.size();
const cv::Rect surface({0,0}, in_parent_size);
out_objects.clear();
const float *data = in_ssd_result.ptr<float>();
for (int i = 0; i < MAX_PROPOSALS; i++) {
const float image_id = data[i * OBJECT_SIZE + 0];
const float label = data[i * OBJECT_SIZE + 1];
const float confidence = data[i * OBJECT_SIZE + 2];
const float rc_left = data[i * OBJECT_SIZE + 3];
const float rc_top = data[i * OBJECT_SIZE + 4];
const float rc_right = data[i * OBJECT_SIZE + 5];
const float rc_bottom = data[i * OBJECT_SIZE + 6];
(void) label; // unused
if (image_id < 0.f) {
break; // marks end-of-detections
}
if (confidence < 0.5f) {
continue; // skip objects with low confidence
}
// map relative coordinates to the original image scale
// taking the ROI into account
cv::Rect rc;
rc.x = static_cast<int>(rc_left * up_roi.width);
rc.y = static_cast<int>(rc_top * up_roi.height);
rc.width = static_cast<int>(rc_right * up_roi.width) - rc.x;
rc.height = static_cast<int>(rc_bottom * up_roi.height) - rc.y;
rc.x += in_roi.x;
rc.y += in_roi.y;
out_objects.emplace_back(rc & surface);
}
}
};
} // namespace custom
namespace cfg {
typename cv::gapi::wip::onevpl::CfgParam create_from_string(const std::string &line);
struct flow {
flow(bool preproc, bool rctx) :
vpl_preproc_enable(preproc),
ie_remote_ctx_enable(rctx) {
}
bool vpl_preproc_enable = false;
bool ie_remote_ctx_enable = false;
};
using support_matrix =
std::map <std::string/*source_dev_id*/,
std::map<std::string/*preproc_device_id*/,
std::map <std::string/*rctx device_id*/, std::shared_ptr<flow>>>>;
support_matrix resolved_conf{{
{"GPU", {{
{"", {{ "CPU", std::make_shared<flow>(false, false)},
{ "GPU", {/* unsupported:
* ie GPU preproc isn't available */}}
}},
{"CPU", {{ "CPU", {/* unsupported: preproc mix */}},
{ "GPU", {/* unsupported: preproc mix */}}
}},
#if defined(HAVE_DIRECTX) && defined(HAVE_D3D11)
{"GPU", {{ "CPU", std::make_shared<flow>(true, false)},
{ "GPU", std::make_shared<flow>(true, true)}}}
#else // TODO VAAPI under linux doesn't support GPU IE remote context
{"GPU", {{ "CPU", std::make_shared<flow>(true, false)},
{ "GPU", std::make_shared<flow>(true, false)}}}
#endif
}}
},
{"CPU", {{
{"", {{ "CPU", std::make_shared<flow>(false, false)},
{ "GPU", std::make_shared<flow>(false, false)}
}},
{"CPU", {{ "CPU", std::make_shared<flow>(true, false)},
{ "GPU", std::make_shared<flow>(true, false)}
}},
{"GPU", {{ "CPU", {/* unsupported: preproc mix */}},
{ "GPU", {/* unsupported: preproc mix */}}}}
}}
}
}};
static void print_available_cfg(std::ostream &out,
const std::string &source_device,
const std::string &preproc_device,
const std::string &ie_device_id) {
const std::string source_device_cfg_name("--source_device=");
const std::string preproc_device_cfg_name("--preproc_device=");
const std::string ie_cfg_name("--faced=");
out << "unsupported acceleration param combinations:\n"
<< source_device_cfg_name << source_device << " "
<< preproc_device_cfg_name << preproc_device << " "
<< ie_cfg_name << ie_device_id <<
"\n\nSupported matrix:\n\n" << std::endl;
for (const auto &s_d : cfg::resolved_conf) {
std::string prefix = source_device_cfg_name + s_d.first;
for (const auto &p_d : s_d.second) {
std::string mid_prefix = prefix + +"\t" + preproc_device_cfg_name +
(p_d.first.empty() ? "" : p_d.first);
for (const auto &i_d : p_d.second) {
if (i_d.second) {
std::cerr << mid_prefix << "\t" << ie_cfg_name <<i_d.first << std::endl;
}
}
}
}
}
}
int main(int argc, char *argv[]) {
cv::CommandLineParser cmd(argc, argv, keys);
cmd.about(about);
if (cmd.has("help")) {
cmd.printMessage();
return 0;
}
// get file name
const auto file_path = cmd.get<std::string>("input");
const auto output = cmd.get<std::string>("output");
const auto opt_roi = parse_roi(cmd.get<std::string>("roi"));
const auto face_model_path = cmd.get<std::string>("facem");
const auto streaming_queue_capacity = cmd.get<uint32_t>("streaming_queue_capacity");
const auto source_decode_queue_capacity = cmd.get<uint32_t>("frames_pool_size");
const auto source_vpp_queue_capacity = cmd.get<uint32_t>("vpp_frames_pool_size");
const auto device_id = cmd.get<std::string>("faced");
const auto source_device = cmd.get<std::string>("source_device");
const auto preproc_device = cmd.get<std::string>("preproc_device");
// validate support matrix
std::shared_ptr<cfg::flow> flow_settings = cfg::resolved_conf[source_device][preproc_device][device_id];
if (!flow_settings) {
cfg::print_available_cfg(std::cerr, source_device, preproc_device, device_id);
return -1;
}
// check output file extension
if (!output.empty()) {
auto ext = output.find_last_of(".");
if (ext == std::string::npos || (output.substr(ext + 1) != "avi")) {
std::cerr << "Output file should have *.avi extension for output video" << std::endl;
return -1;
}
}
// get oneVPL cfg params from cmd
std::stringstream params_list(cmd.get<std::string>("cfg_params"));
std::vector<cv::gapi::wip::onevpl::CfgParam> source_cfgs;
try {
std::string line;
while (std::getline(params_list, line, ';')) {
source_cfgs.push_back(cfg::create_from_string(line));
}
} catch (const std::exception& ex) {
std::cerr << "Invalid cfg parameter: " << ex.what() << std::endl;
return -1;
}
// apply VPL source optimization params
if (source_decode_queue_capacity != 0) {
source_cfgs.push_back(cv::gapi::wip::onevpl::CfgParam::create_frames_pool_size(source_decode_queue_capacity));
}
if (source_vpp_queue_capacity != 0) {
source_cfgs.push_back(cv::gapi::wip::onevpl::CfgParam::create_vpp_frames_pool_size(source_vpp_queue_capacity));
}
auto face_net = cv::gapi::ie::Params<custom::FaceDetector> {
face_model_path, // path to topology IR
get_weights_path(face_model_path), // path to weights
device_id
};
// It is allowed (and highly recommended) to reuse predefined device_ptr & context_ptr objects
// received from user application. Current sample demonstrate how to deal with this situation.
//
// But if you do not need this fine-grained acceleration devices configuration then
// just use default constructors for onevpl::GSource, IE and preprocessing module.
// But please pay attention that default pipeline construction in this case will be
// very inefficient and carries out multiple CPU-GPU memory copies
//
// If you want to reach max performance and seize copy-free approach for specific
// device & context selection then follow the steps below.
// The situation is complicated a little bit in comparison with default configuration, thus
// let's focusing this:
//
// - all component-participants (Source, Preprocessing, Inference)
// must share the same device & context instances
//
// - you must wrapping your available device & context instancs into thin
// `cv::gapi::wip::Device` & `cv::gapi::wip::Context`.
// !!! Please pay attention that both objects are weak wrapper so you must ensure
// that device & context would be alived before full pipeline created !!!
//
// - you should pass such wrappers as constructor arguments for each component in pipeline:
// a) use extended constructor for `onevpl::GSource` for activating predefined device & context
// b) use `cfgContextParams` method of `cv::gapi::ie::Params` to enable `PreprocesingEngine`
// for predefined device & context
// c) use `InferenceEngine::ParamMap` to activate remote ctx in Inference Engine for given
// device & context
//
//
//// P.S. the current sample supports heterogenous pipeline construction also.
//// It is possible to make up mixed device approach.
//// Please feel free to explore different configurations!
cv::util::optional<cv::gapi::wip::onevpl::Device> gpu_accel_device;
cv::util::optional<cv::gapi::wip::onevpl::Context> gpu_accel_ctx;
cv::gapi::wip::onevpl::Device cpu_accel_device = cv::gapi::wip::onevpl::create_host_device();
cv::gapi::wip::onevpl::Context cpu_accel_ctx = cv::gapi::wip::onevpl::create_host_context();
// create GPU device if requested
if (is_gpu(device_id)
|| is_gpu(source_device)
|| is_gpu(preproc_device)) {
#ifdef HAVE_DIRECTX
#ifdef HAVE_D3D11
// create DX11 device & context owning handles.
// wip::Device & wip::Context provide non-owning semantic of resources and act
// as weak references API wrappers in order to carry type-erased resources type
// into appropriate modules: onevpl::GSource, PreprocEngine and InferenceEngine
// Until modules are not created owner handles must stay alive
auto dx11_dev = createCOMPtrGuard<ID3D11Device>();
auto dx11_ctx = createCOMPtrGuard<ID3D11DeviceContext>();
auto adapter_factory = createCOMPtrGuard<IDXGIFactory>();
{
IDXGIFactory* out_factory = nullptr;
HRESULT err = CreateDXGIFactory(__uuidof(IDXGIFactory),
reinterpret_cast<void**>(&out_factory));
if (FAILED(err)) {
std::cerr << "Cannot create CreateDXGIFactory, error: " << HRESULT_CODE(err) << std::endl;
return -1;
}
adapter_factory = createCOMPtrGuard(out_factory);
}
auto intel_adapter = createCOMPtrGuard<IDXGIAdapter>();
UINT adapter_index = 0;
const unsigned int refIntelVendorID = 0x8086;
IDXGIAdapter* out_adapter = nullptr;
while (adapter_factory->EnumAdapters(adapter_index, &out_adapter) != DXGI_ERROR_NOT_FOUND) {
DXGI_ADAPTER_DESC desc{};
out_adapter->GetDesc(&desc);
if (desc.VendorId == refIntelVendorID) {
intel_adapter = createCOMPtrGuard(out_adapter);
break;
}
++adapter_index;
}
if (!intel_adapter) {
std::cerr << "No Intel GPU adapter on aboard. Exit" << std::endl;
return -1;
}
std::tie(dx11_dev, dx11_ctx) = create_device_with_ctx(intel_adapter.get());
gpu_accel_device = cv::util::make_optional(
cv::gapi::wip::onevpl::create_dx11_device(
reinterpret_cast<void*>(dx11_dev.release()),
"GPU"));
gpu_accel_ctx = cv::util::make_optional(
cv::gapi::wip::onevpl::create_dx11_context(
reinterpret_cast<void*>(dx11_ctx.release())));
#endif // HAVE_D3D11
#endif // HAVE_DIRECTX
#ifdef __linux__
#if defined(HAVE_VA) || defined(HAVE_VA_INTEL)
static const char *predefined_vaapi_devices_list[] {"/dev/dri/renderD128",
"/dev/dri/renderD129",
"/dev/dri/card0",
"/dev/dri/card1",
nullptr};
std::stringstream ss;
int device_fd = -1;
VADisplay va_handle = nullptr;
for (const char **device_path = predefined_vaapi_devices_list;
*device_path != nullptr; device_path++) {
device_fd = open(*device_path, O_RDWR);
if (device_fd < 0) {
std::string info("Cannot open GPU file: \"");
info = info + *device_path + "\", error: " + strerror(errno);
ss << info << std::endl;
continue;
}
va_handle = vaGetDisplayDRM(device_fd);
if (!va_handle) {
close(device_fd);
std::string info("VAAPI device vaGetDisplayDRM failed, error: ");
info += strerror(errno);
ss << info << std::endl;
continue;
}
int major_version = 0, minor_version = 0;
VAStatus status {};
status = vaInitialize(va_handle, &major_version, &minor_version);
if (VA_STATUS_SUCCESS != status) {
close(device_fd);
va_handle = nullptr;
std::string info("Cannot initialize VAAPI device, error: ");
info += vaErrorStr(status);
ss << info << std::endl;
continue;
}
std::cout << "VAAPI created for device: " << *device_path << ", version: "
<< major_version << "." << minor_version << std::endl;
break;
}
// check device creation
if (!va_handle) {
std::cerr << "Cannot create VAAPI device. Log:\n" << ss.str() << std::endl;
return -1;
}
gpu_accel_device = cv::util::make_optional(
cv::gapi::wip::onevpl::create_vaapi_device(reinterpret_cast<void*>(va_handle),
"GPU"));
gpu_accel_ctx = cv::util::make_optional(
cv::gapi::wip::onevpl::create_vaapi_context(nullptr));
#endif // defined(HAVE_VA) || defined(HAVE_VA_INTEL)
#endif // #ifdef __linux__
}
#ifdef HAVE_INF_ENGINE
// activate remote ctx in Inference Engine for GPU device
// when other pipeline component use the GPU device too
if (flow_settings->ie_remote_ctx_enable) {
InferenceEngine::ParamMap ctx_config({{"CONTEXT_TYPE", "VA_SHARED"},
{"VA_DEVICE", gpu_accel_device.value().get_ptr()} });
face_net.cfgContextParams(ctx_config);
std::cout << "enforce InferenceEngine remote context on device: " << device_id << std::endl;
// NB: consider NV12 surface because it's one of native GPU image format
face_net.pluginConfig({{"GPU_NV12_TWO_INPUTS", "YES" }});
std::cout << "enforce InferenceEngine NV12 blob" << std::endl;
}
#endif // HAVE_INF_ENGINE
// turn on VPP PreprocesingEngine if available & requested
if (flow_settings->vpl_preproc_enable) {
if (is_gpu(preproc_device)) {
// activate VPP PreprocesingEngine on GPU
face_net.cfgPreprocessingParams(gpu_accel_device.value(),
gpu_accel_ctx.value());
} else {
// activate VPP PreprocesingEngine on CPU
face_net.cfgPreprocessingParams(cpu_accel_device,
cpu_accel_ctx);
}
std::cout << "enforce VPP preprocessing on device: " << preproc_device << std::endl;
} else {
std::cout << "use InferenceEngine default preprocessing" << std::endl;
}
auto kernels = cv::gapi::kernels
< custom::OCVLocateROI
, custom::OCVParseSSD
, custom::OCVBBoxes>();
auto networks = cv::gapi::networks(face_net);
auto face_detection_args = cv::compile_args(networks, kernels);
if (streaming_queue_capacity != 0) {
face_detection_args += cv::compile_args(cv::gapi::streaming::queue_capacity{ streaming_queue_capacity });
}
// Create source
cv::gapi::wip::IStreamSource::Ptr cap;
try {
if (is_gpu(source_device)) {
std::cout << "enforce VPL Source deconding on device: " << source_device << std::endl;
// use special 'Device' constructor for `onevpl::GSource`
cap = cv::gapi::wip::make_onevpl_src(file_path, source_cfgs,
gpu_accel_device.value(),
gpu_accel_ctx.value());
} else {
cap = cv::gapi::wip::make_onevpl_src(file_path, source_cfgs);
}
std::cout << "oneVPL source description: " << cap->descr_of() << std::endl;
} catch (const std::exception& ex) {
std::cerr << "Cannot create source: " << ex.what() << std::endl;
return -1;
}
cv::GMetaArg descr = cap->descr_of();
auto frame_descr = cv::util::get<cv::GFrameDesc>(descr);
cv::GOpaque<cv::Rect> in_roi;
auto inputs = cv::gin(cap);
// Now build the graph
cv::GFrame in;
auto size = cv::gapi::streaming::size(in);
auto graph_inputs = cv::GIn(in);
if (!opt_roi.has_value()) {
// Automatically detect ROI to infer. Make it output parameter
std::cout << "ROI is not set or invalid. Locating it automatically"
<< std::endl;
in_roi = custom::LocateROI::on(size);
} else {
// Use the value provided by user
std::cout << "Will run inference for static region "
<< opt_roi.value()
<< " only"
<< std::endl;
graph_inputs += cv::GIn(in_roi);
inputs += cv::gin(opt_roi.value());
}
auto blob = cv::gapi::infer<custom::FaceDetector>(in_roi, in);
cv::GArray<cv::Rect> rcs = custom::ParseSSD::on(blob, in_roi, size);
auto out_frame = cv::gapi::wip::draw::renderFrame(in, custom::BBoxes::on(rcs, in_roi));
auto out = cv::gapi::streaming::BGR(out_frame);
cv::GStreamingCompiled pipeline = cv::GComputation(std::move(graph_inputs), cv::GOut(out)) // and move here
.compileStreaming(std::move(face_detection_args));
// The execution part
pipeline.setSource(std::move(inputs));
pipeline.start();
size_t frames = 0u;
cv::TickMeter tm;
cv::VideoWriter writer;
if (!output.empty() && !writer.isOpened()) {
const auto sz = cv::Size{frame_descr.size.width, frame_descr.size.height};
writer.open(output, cv::VideoWriter::fourcc('M','J','P','G'), 25.0, sz);
GAPI_Assert(writer.isOpened());
}
cv::Mat outMat;
tm.start();
while (pipeline.pull(cv::gout(outMat))) {
cv::imshow("Out", outMat);
cv::waitKey(1);
if (!output.empty()) {
writer << outMat;
}
++frames;
}
tm.stop();
std::cout << "Processed " << frames << " frames" << " (" << frames / tm.getTimeSec() << " FPS)" << std::endl;
return 0;
}
namespace cfg {
typename cv::gapi::wip::onevpl::CfgParam create_from_string(const std::string &line) {
using namespace cv::gapi::wip;
if (line.empty()) {
throw std::runtime_error("Cannot parse CfgParam from emply line");
}
std::string::size_type name_endline_pos = line.find(':');
if (name_endline_pos == std::string::npos) {
throw std::runtime_error("Cannot parse CfgParam from: " + line +
"\nExpected separator \":\"");
}
std::string name = line.substr(0, name_endline_pos);
std::string value = line.substr(name_endline_pos + 1);
return cv::gapi::wip::onevpl::CfgParam::create(name, value,
/* vpp params strongly optional */
name.find("vpp.") == std::string::npos);
}
}
|