1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
|
#ifndef OPENCV_GAPI_PIPELINE_MODELING_TOOL_PIPELINE_BUILDER_HPP
#define OPENCV_GAPI_PIPELINE_MODELING_TOOL_PIPELINE_BUILDER_HPP
#include <map>
#include <opencv2/gapi/infer.hpp> // cv::gapi::GNetPackage
#include <opencv2/gapi/streaming/cap.hpp> // cv::gapi::wip::IStreamSource
#include <opencv2/gapi/infer/ie.hpp> // cv::gapi::ie::Params
#include <opencv2/gapi/gcommon.hpp> // cv::gapi::GCompileArgs
#include <opencv2/gapi/cpu/gcpukernel.hpp> // GAPI_OCV_KERNEL
#include <opencv2/gapi/gkernel.hpp> // G_API_OP
#include "pipeline.hpp"
#include "utils.hpp"
struct Edge {
struct P {
std::string name;
size_t port;
};
P src;
P dst;
};
struct CallParams {
std::string name;
size_t call_every_nth;
};
struct CallNode {
using F = std::function<void(const cv::GProtoArgs&, cv::GProtoArgs&)>;
CallParams params;
F run;
};
struct DataNode {
cv::optional<cv::GProtoArg> arg;
};
struct Node {
using Ptr = std::shared_ptr<Node>;
using WPtr = std::weak_ptr<Node>;
using Kind = cv::util::variant<CallNode, DataNode>;
std::vector<Node::WPtr> in_nodes;
std::vector<Node::Ptr> out_nodes;
Kind kind;
};
struct SubGraphCall {
G_API_OP(GSubGraph,
<cv::GMat(cv::GMat, cv::GComputation, cv::GCompileArgs, size_t)>,
"custom.subgraph") {
static cv::GMatDesc outMeta(const cv::GMatDesc& in,
cv::GComputation comp,
cv::GCompileArgs compile_args,
const size_t call_every_nth) {
GAPI_Assert(call_every_nth > 0);
auto out_metas =
comp.compile(in, std::move(compile_args)).outMetas();
GAPI_Assert(out_metas.size() == 1u);
GAPI_Assert(cv::util::holds_alternative<cv::GMatDesc>(out_metas[0]));
return cv::util::get<cv::GMatDesc>(out_metas[0]);
}
};
struct SubGraphState {
cv::Mat last_result;
cv::GCompiled cc;
int call_counter = 0;
};
GAPI_OCV_KERNEL_ST(SubGraphImpl, GSubGraph, SubGraphState) {
static void setup(const cv::GMatDesc& in,
cv::GComputation comp,
cv::GCompileArgs compile_args,
const size_t /*call_every_nth*/,
std::shared_ptr<SubGraphState>& state,
const cv::GCompileArgs& /*args*/) {
state.reset(new SubGraphState{});
state->cc = comp.compile(in, std::move(compile_args));
auto out_desc =
cv::util::get<cv::GMatDesc>(state->cc.outMetas()[0]);
utils::createNDMat(state->last_result,
out_desc.dims,
out_desc.depth);
}
static void run(const cv::Mat& in,
cv::GComputation /*comp*/,
cv::GCompileArgs /*compile_args*/,
const size_t call_every_nth,
cv::Mat& out,
SubGraphState& state) {
// NB: Make a call on the first iteration and skip the furthers.
if (state.call_counter == 0) {
state.cc(in, state.last_result);
}
state.last_result.copyTo(out);
state.call_counter = (state.call_counter + 1) % call_every_nth;
}
};
void operator()(const cv::GProtoArgs& inputs, cv::GProtoArgs& outputs);
size_t numInputs() const { return 1; }
size_t numOutputs() const { return 1; }
cv::GComputation comp;
cv::GCompileArgs compile_args;
size_t call_every_nth;
};
void SubGraphCall::operator()(const cv::GProtoArgs& inputs,
cv::GProtoArgs& outputs) {
GAPI_Assert(inputs.size() == 1u);
GAPI_Assert(cv::util::holds_alternative<cv::GMat>(inputs[0]));
GAPI_Assert(outputs.empty());
auto in = cv::util::get<cv::GMat>(inputs[0]);
outputs.emplace_back(GSubGraph::on(in, comp, compile_args, call_every_nth));
}
struct DummyCall {
G_API_OP(GDummy,
<cv::GMat(cv::GMat, double, OutputDescr)>,
"custom.dummy") {
static cv::GMatDesc outMeta(const cv::GMatDesc& /* in */,
double /* time */,
const OutputDescr& output) {
if (output.dims.size() == 2) {
return cv::GMatDesc(output.precision,
1,
// NB: Dims[H, W] -> Size(W, H)
cv::Size(output.dims[1], output.dims[0]));
}
return cv::GMatDesc(output.precision, output.dims);
}
};
struct DummyState {
cv::Mat mat;
};
// NB: Generate random mat once and then
// copy to dst buffer on every iteration.
GAPI_OCV_KERNEL_ST(GCPUDummy, GDummy, DummyState) {
static void setup(const cv::GMatDesc& /*in*/,
double /*time*/,
const OutputDescr& output,
std::shared_ptr<DummyState>& state,
const cv::GCompileArgs& /*args*/) {
state.reset(new DummyState{});
utils::createNDMat(state->mat, output.dims, output.precision);
utils::generateRandom(state->mat);
}
static void run(const cv::Mat& /*in_mat*/,
double time,
const OutputDescr& /*output*/,
cv::Mat& out_mat,
DummyState& state) {
using namespace std::chrono;
auto start_ts = utils::timestamp<utils::double_ms_t>();
state.mat.copyTo(out_mat);
auto elapsed = utils::timestamp<utils::double_ms_t>() - start_ts;
utils::busyWait(duration_cast<microseconds>(utils::double_ms_t{time-elapsed}));
}
};
void operator()(const cv::GProtoArgs& inputs, cv::GProtoArgs& outputs);
size_t numInputs() const { return 1; }
size_t numOutputs() const { return 1; }
double time;
OutputDescr output;
};
void DummyCall::operator()(const cv::GProtoArgs& inputs,
cv::GProtoArgs& outputs) {
GAPI_Assert(inputs.size() == 1u);
GAPI_Assert(cv::util::holds_alternative<cv::GMat>(inputs[0]));
GAPI_Assert(outputs.empty());
auto in = cv::util::get<cv::GMat>(inputs[0]);
outputs.emplace_back(GDummy::on(in, time, output));
}
struct InferCall {
void operator()(const cv::GProtoArgs& inputs, cv::GProtoArgs& outputs);
size_t numInputs() const { return input_layers.size(); }
size_t numOutputs() const { return output_layers.size(); }
std::string tag;
std::vector<std::string> input_layers;
std::vector<std::string> output_layers;
};
void InferCall::operator()(const cv::GProtoArgs& inputs,
cv::GProtoArgs& outputs) {
GAPI_Assert(inputs.size() == input_layers.size());
GAPI_Assert(outputs.empty());
cv::GInferInputs g_inputs;
// TODO: Add an opportunity not specify input/output layers in case
// there is only single layer.
for (size_t i = 0; i < inputs.size(); ++i) {
// TODO: Support GFrame as well.
GAPI_Assert(cv::util::holds_alternative<cv::GMat>(inputs[i]));
auto in = cv::util::get<cv::GMat>(inputs[i]);
g_inputs[input_layers[i]] = in;
}
auto g_outputs = cv::gapi::infer<cv::gapi::Generic>(tag, g_inputs);
for (size_t i = 0; i < output_layers.size(); ++i) {
outputs.emplace_back(g_outputs.at(output_layers[i]));
}
}
struct SourceCall {
void operator()(const cv::GProtoArgs& inputs, cv::GProtoArgs& outputs);
size_t numInputs() const { return 0; }
size_t numOutputs() const { return 1; }
};
void SourceCall::operator()(const cv::GProtoArgs& inputs,
cv::GProtoArgs& outputs) {
GAPI_Assert(inputs.empty());
GAPI_Assert(outputs.empty());
// NB: Since NV12 isn't exposed source always produce GMat.
outputs.emplace_back(cv::GMat());
}
struct LoadPath {
std::string xml;
std::string bin;
};
struct ImportPath {
std::string blob;
};
using ModelPath = cv::util::variant<ImportPath, LoadPath>;
struct DummyParams {
double time;
OutputDescr output;
};
struct InferParams {
std::string name;
ModelPath path;
std::string device;
std::vector<std::string> input_layers;
std::vector<std::string> output_layers;
std::map<std::string, std::string> config;
cv::gapi::ie::InferMode mode;
cv::util::optional<int> out_precision;
};
class ElapsedTimeCriterion : public StopCriterion {
public:
ElapsedTimeCriterion(int64_t work_time_mcs);
void start() override;
void iter() override;
bool done() override;
private:
int64_t m_work_time_mcs;
int64_t m_start_ts = -1;
int64_t m_curr_ts = -1;
};
ElapsedTimeCriterion::ElapsedTimeCriterion(int64_t work_time_mcs)
: m_work_time_mcs(work_time_mcs) {
};
void ElapsedTimeCriterion::start() {
m_start_ts = m_curr_ts = utils::timestamp<std::chrono::microseconds>();
}
void ElapsedTimeCriterion::iter() {
m_curr_ts = utils::timestamp<std::chrono::microseconds>();
}
bool ElapsedTimeCriterion::done() {
return (m_curr_ts - m_start_ts) >= m_work_time_mcs;
}
class NumItersCriterion : public StopCriterion {
public:
NumItersCriterion(int64_t num_iters);
void start() override;
void iter() override;
bool done() override;
private:
int64_t m_num_iters;
int64_t m_curr_iters = 0;
};
NumItersCriterion::NumItersCriterion(int64_t num_iters)
: m_num_iters(num_iters) {
}
void NumItersCriterion::start() {
m_curr_iters = 0;
}
void NumItersCriterion::iter() {
++m_curr_iters;
}
bool NumItersCriterion::done() {
return m_curr_iters == m_num_iters;
}
class PipelineBuilder {
public:
PipelineBuilder();
void addDummy(const CallParams& call_params,
const DummyParams& dummy_params);
void addInfer(const CallParams& call_params,
const InferParams& infer_params);
void setSource(const std::string& name,
std::shared_ptr<DummySource> src);
void addEdge(const Edge& edge);
void setMode(PLMode mode);
void setDumpFilePath(const std::string& dump);
void setQueueCapacity(const size_t qc);
void setName(const std::string& name);
void setStopCriterion(StopCriterion::Ptr stop_criterion);
Pipeline::Ptr build();
private:
template <typename CallT>
void addCall(const CallParams& call_params,
CallT&& call);
Pipeline::Ptr construct();
template <typename K, typename V>
using M = std::unordered_map<K, V>;
struct State {
struct NodeEdges {
std::vector<Edge> input_edges;
std::vector<Edge> output_edges;
};
M<std::string, Node::Ptr> calls_map;
std::vector<Node::Ptr> all_calls;
cv::gapi::GNetPackage networks;
cv::gapi::GKernelPackage kernels;
cv::GCompileArgs compile_args;
std::shared_ptr<DummySource> src;
PLMode mode = PLMode::STREAMING;
std::string name;
StopCriterion::Ptr stop_criterion;
};
std::unique_ptr<State> m_state;
};
PipelineBuilder::PipelineBuilder() : m_state(new State{}) { };
void PipelineBuilder::addDummy(const CallParams& call_params,
const DummyParams& dummy_params) {
m_state->kernels.include<DummyCall::GCPUDummy>();
addCall(call_params,
DummyCall{dummy_params.time, dummy_params.output});
}
template <typename CallT>
void PipelineBuilder::addCall(const CallParams& call_params,
CallT&& call) {
size_t num_inputs = call.numInputs();
size_t num_outputs = call.numOutputs();
Node::Ptr call_node(new Node{{},{},Node::Kind{CallNode{call_params,
std::move(call)}}});
// NB: Create placeholders for inputs.
call_node->in_nodes.resize(num_inputs);
// NB: Create outputs with empty data.
for (size_t i = 0; i < num_outputs; ++i) {
call_node->out_nodes.emplace_back(new Node{{call_node},
{},
Node::Kind{DataNode{}}});
}
auto it = m_state->calls_map.find(call_params.name);
if (it != m_state->calls_map.end()) {
throw std::logic_error("Node: " + call_params.name + " already exists!");
}
m_state->calls_map.emplace(call_params.name, call_node);
m_state->all_calls.emplace_back(call_node);
}
void PipelineBuilder::addInfer(const CallParams& call_params,
const InferParams& infer_params) {
// NB: No default ctor for Params.
std::unique_ptr<cv::gapi::ie::Params<cv::gapi::Generic>> pp;
if (cv::util::holds_alternative<LoadPath>(infer_params.path)) {
auto load_path = cv::util::get<LoadPath>(infer_params.path);
pp.reset(new cv::gapi::ie::Params<cv::gapi::Generic>(call_params.name,
load_path.xml,
load_path.bin,
infer_params.device));
} else {
GAPI_Assert(cv::util::holds_alternative<ImportPath>(infer_params.path));
auto import_path = cv::util::get<ImportPath>(infer_params.path);
pp.reset(new cv::gapi::ie::Params<cv::gapi::Generic>(call_params.name,
import_path.blob,
infer_params.device));
}
pp->pluginConfig(infer_params.config);
pp->cfgInferMode(infer_params.mode);
if (infer_params.out_precision) {
pp->cfgOutputPrecision(infer_params.out_precision.value());
}
m_state->networks += cv::gapi::networks(*pp);
addCall(call_params,
InferCall{call_params.name,
infer_params.input_layers,
infer_params.output_layers});
}
void PipelineBuilder::addEdge(const Edge& edge) {
const auto& src_it = m_state->calls_map.find(edge.src.name);
if (src_it == m_state->calls_map.end()) {
throw std::logic_error("Failed to find node: " + edge.src.name);
}
auto src_node = src_it->second;
if (src_node->out_nodes.size() <= edge.src.port) {
throw std::logic_error("Failed to access node: " + edge.src.name +
" by out port: " + std::to_string(edge.src.port));
}
auto dst_it = m_state->calls_map.find(edge.dst.name);
if (dst_it == m_state->calls_map.end()) {
throw std::logic_error("Failed to find node: " + edge.dst.name);
}
auto dst_node = dst_it->second;
if (dst_node->in_nodes.size() <= edge.dst.port) {
throw std::logic_error("Failed to access node: " + edge.dst.name +
" by in port: " + std::to_string(edge.dst.port));
}
auto out_data = src_node->out_nodes[edge.src.port];
auto& in_data = dst_node->in_nodes[edge.dst.port];
// NB: in_data != nullptr.
if (!in_data.expired()) {
throw std::logic_error("Node: " + edge.dst.name +
" already connected by in port: " +
std::to_string(edge.dst.port));
}
dst_node->in_nodes[edge.dst.port] = out_data;
out_data->out_nodes.push_back(dst_node);
}
void PipelineBuilder::setSource(const std::string& name,
std::shared_ptr<DummySource> src) {
GAPI_Assert(!m_state->src && "Only single source pipelines are supported!");
m_state->src = src;
addCall(CallParams{name, 1u/*call_every_nth*/}, SourceCall{});
}
void PipelineBuilder::setMode(PLMode mode) {
m_state->mode = mode;
}
void PipelineBuilder::setDumpFilePath(const std::string& dump) {
m_state->compile_args.emplace_back(cv::graph_dump_path{dump});
}
void PipelineBuilder::setQueueCapacity(const size_t qc) {
m_state->compile_args.emplace_back(cv::gapi::streaming::queue_capacity{qc});
}
void PipelineBuilder::setName(const std::string& name) {
m_state->name = name;
}
void PipelineBuilder::setStopCriterion(StopCriterion::Ptr stop_criterion) {
m_state->stop_criterion = std::move(stop_criterion);
}
static bool visit(Node::Ptr node,
std::vector<Node::Ptr>& sorted,
std::unordered_map<Node::Ptr, int>& visited) {
if (!node) {
throw std::logic_error("Found null node");
}
visited[node] = 1;
for (auto in : node->in_nodes) {
auto in_node = in.lock();
if (visited[in_node] == 0) {
if (visit(in_node, sorted, visited)) {
return true;
}
} else if (visited[in_node] == 1) {
return true;
}
}
visited[node] = 2;
sorted.push_back(node);
return false;
}
static cv::optional<std::vector<Node::Ptr>>
toposort(const std::vector<Node::Ptr> nodes) {
std::vector<Node::Ptr> sorted;
std::unordered_map<Node::Ptr, int> visited;
for (auto n : nodes) {
if (visit(n, sorted, visited)) {
return cv::optional<std::vector<Node::Ptr>>{};
}
}
return cv::util::make_optional(sorted);
}
Pipeline::Ptr PipelineBuilder::construct() {
// NB: Unlike G-API, pipeline_builder_tool graph always starts with CALL node
// (not data) that produce datas, so the call node which doesn't have
// inputs is considered as "producer" node.
//
// Graph always starts with CALL node and ends with DATA node.
// Graph example: [source] -> (source:0) -> [PP] -> (PP:0)
//
// The algorithm is quite simple:
// 0. Verify that every call input node exists (connected).
// 1. Sort all nodes by visiting only call nodes,
// since there is no data nodes that's not connected with any call node,
// it's guarantee that every node will be visited.
// 2. Fillter call nodes.
// 3. Go through every call node.
// FIXME: Add toposort in case user passed nodes
// in arbitrary order which is unlikely happened.
// 4. Extract proto input from every input node
// 5. Run call and get outputs
// 6. If call node doesn't have inputs it means that it's "producer" node,
// so collect all outputs to graph_inputs vector.
// 7. Assign proto outputs to output data nodes,
// so the next calls can use them as inputs.
cv::GProtoArgs graph_inputs;
cv::GProtoArgs graph_outputs;
// 0. Verify that every call input node exists (connected).
for (auto call_node : m_state->all_calls) {
for (size_t i = 0; i < call_node->in_nodes.size(); ++i) {
const auto& in_data_node = call_node->in_nodes[i];
// NB: in_data_node == nullptr.
if (in_data_node.expired()) {
const auto& call = cv::util::get<CallNode>(call_node->kind);
throw std::logic_error(
"Node: " + call.params.name + " in Pipeline: " + m_state->name +
" has dangling input by in port: " + std::to_string(i));
}
}
}
// (0) Sort all nodes;
auto has_sorted = toposort(m_state->all_calls);
if (!has_sorted) {
throw std::logic_error(
"Pipeline: " + m_state->name + " has cyclic dependencies") ;
}
auto& sorted = has_sorted.value();
// (1). Fillter call nodes.
std::vector<Node::Ptr> sorted_calls;
for (auto n : sorted) {
if (cv::util::holds_alternative<CallNode>(n->kind)) {
sorted_calls.push_back(n);
}
}
m_state->kernels.include<SubGraphCall::SubGraphImpl>();
m_state->compile_args.emplace_back(m_state->networks);
m_state->compile_args.emplace_back(m_state->kernels);
// (2). Go through every call node.
for (auto call_node : sorted_calls) {
auto& call = cv::util::get<CallNode>(call_node->kind);
cv::GProtoArgs outputs;
cv::GProtoArgs inputs;
for (size_t i = 0; i < call_node->in_nodes.size(); ++i) {
auto in_node = call_node->in_nodes.at(i);
auto in_data = cv::util::get<DataNode>(in_node.lock()->kind);
if (!in_data.arg.has_value()) {
throw std::logic_error("data hasn't been provided");
}
// (3). Extract proto input from every input node.
inputs.push_back(in_data.arg.value());
}
// NB: If node shouldn't be called on each iterations,
// it should be wrapped into subgraph which is able to skip calling.
if (call.params.call_every_nth != 1u) {
// FIXME: Limitation of the subgraph operation (<GMat(GMat)>).
// G-API doesn't support dynamic number of inputs/outputs.
if (inputs.size() > 1u) {
throw std::logic_error(
"skip_frame_nth is supported only for single input subgraphs\n"
"Current subgraph has " + std::to_string(inputs.size()) + " inputs");
}
if (outputs.size() > 1u) {
throw std::logic_error(
"skip_frame_nth is supported only for single output subgraphs\n"
"Current subgraph has " + std::to_string(inputs.size()) + " outputs");
}
// FIXME: Should be generalized.
// Now every subgraph contains only single node
// which has single input/output.
GAPI_Assert(cv::util::holds_alternative<cv::GMat>(inputs[0]));
cv::GProtoArgs subgr_inputs{cv::GProtoArg{cv::GMat()}};
cv::GProtoArgs subgr_outputs;
call.run(subgr_inputs, subgr_outputs);
auto comp = cv::GComputation(cv::GProtoInputArgs{subgr_inputs},
cv::GProtoOutputArgs{subgr_outputs});
call = CallNode{CallParams{call.params.name, 1u/*call_every_nth*/},
SubGraphCall{std::move(comp),
m_state->compile_args,
call.params.call_every_nth}};
}
// (4). Run call and get outputs.
call.run(inputs, outputs);
// (5) If call node doesn't have inputs
// it means that it's input producer node (Source).
if (call_node->in_nodes.empty()) {
for (auto out : outputs) {
graph_inputs.push_back(out);
}
}
// (6). Assign proto outputs to output data nodes,
// so the next calls can use them as inputs.
GAPI_Assert(outputs.size() == call_node->out_nodes.size());
for (size_t i = 0; i < outputs.size(); ++i) {
auto out_node = call_node->out_nodes[i];
auto& out_data = cv::util::get<DataNode>(out_node->kind);
out_data.arg = cv::util::make_optional(outputs[i]);
if (out_node->out_nodes.empty()) {
graph_outputs.push_back(out_data.arg.value());
}
}
}
GAPI_Assert(m_state->stop_criterion);
GAPI_Assert(graph_inputs.size() == 1);
GAPI_Assert(cv::util::holds_alternative<cv::GMat>(graph_inputs[0]));
// FIXME: Handle GFrame when NV12 comes.
const auto& graph_input = cv::util::get<cv::GMat>(graph_inputs[0]);
graph_outputs.emplace_back(
cv::gapi::streaming::timestamp(graph_input).strip());
graph_outputs.emplace_back(
cv::gapi::streaming::seq_id(graph_input).strip());
if (m_state->mode == PLMode::STREAMING) {
return std::make_shared<StreamingPipeline>(std::move(m_state->name),
cv::GComputation(
cv::GProtoInputArgs{graph_inputs},
cv::GProtoOutputArgs{graph_outputs}),
std::move(m_state->src),
std::move(m_state->stop_criterion),
std::move(m_state->compile_args),
graph_outputs.size());
}
GAPI_Assert(m_state->mode == PLMode::REGULAR);
return std::make_shared<RegularPipeline>(std::move(m_state->name),
cv::GComputation(
cv::GProtoInputArgs{graph_inputs},
cv::GProtoOutputArgs{graph_outputs}),
std::move(m_state->src),
std::move(m_state->stop_criterion),
std::move(m_state->compile_args),
graph_outputs.size());
}
Pipeline::Ptr PipelineBuilder::build() {
auto pipeline = construct();
m_state.reset(new State{});
return pipeline;
}
#endif // OPENCV_GAPI_PIPELINE_MODELING_TOOL_PIPELINE_BUILDER_HPP
|