File: pipeline_builder.hpp

package info (click to toggle)
opencv 4.10.0%2Bdfsg-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 282,092 kB
  • sloc: cpp: 1,178,079; xml: 682,621; python: 49,092; lisp: 31,150; java: 25,469; ansic: 11,039; javascript: 6,085; sh: 1,214; cs: 601; perl: 494; objc: 210; makefile: 173
file content (692 lines) | stat: -rw-r--r-- 25,913 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
#ifndef OPENCV_GAPI_PIPELINE_MODELING_TOOL_PIPELINE_BUILDER_HPP
#define OPENCV_GAPI_PIPELINE_MODELING_TOOL_PIPELINE_BUILDER_HPP

#include <map>

#include <opencv2/gapi/infer.hpp> // cv::gapi::GNetPackage
#include <opencv2/gapi/streaming/cap.hpp> // cv::gapi::wip::IStreamSource
#include <opencv2/gapi/infer/ie.hpp> // cv::gapi::ie::Params
#include <opencv2/gapi/gcommon.hpp> // cv::gapi::GCompileArgs
#include <opencv2/gapi/cpu/gcpukernel.hpp> // GAPI_OCV_KERNEL
#include <opencv2/gapi/gkernel.hpp> // G_API_OP

#include "pipeline.hpp"
#include "utils.hpp"

struct Edge {
    struct P {
        std::string name;
        size_t      port;
    };

    P src;
    P dst;
};

struct CallParams {
    std::string name;
    size_t      call_every_nth;
};

struct CallNode {
    using F = std::function<void(const cv::GProtoArgs&, cv::GProtoArgs&)>;

    CallParams params;
    F          run;
};

struct DataNode {
    cv::optional<cv::GProtoArg> arg;
};

struct Node {
    using Ptr  = std::shared_ptr<Node>;
    using WPtr = std::weak_ptr<Node>;
    using Kind = cv::util::variant<CallNode, DataNode>;

    std::vector<Node::WPtr> in_nodes;
    std::vector<Node::Ptr>  out_nodes;
    Kind kind;
};

struct SubGraphCall {
    G_API_OP(GSubGraph,
             <cv::GMat(cv::GMat, cv::GComputation, cv::GCompileArgs, size_t)>,
             "custom.subgraph") {
        static cv::GMatDesc outMeta(const cv::GMatDesc& in,
                                    cv::GComputation    comp,
                                    cv::GCompileArgs    compile_args,
                                    const size_t        call_every_nth) {
            GAPI_Assert(call_every_nth > 0);
            auto out_metas =
                comp.compile(in, std::move(compile_args)).outMetas();
            GAPI_Assert(out_metas.size() == 1u);
            GAPI_Assert(cv::util::holds_alternative<cv::GMatDesc>(out_metas[0]));
            return cv::util::get<cv::GMatDesc>(out_metas[0]);
        }

    };

    struct SubGraphState {
        cv::Mat       last_result;
        cv::GCompiled cc;
        int           call_counter = 0;
    };

    GAPI_OCV_KERNEL_ST(SubGraphImpl, GSubGraph, SubGraphState) {
            static void setup(const cv::GMatDesc&             in,
                              cv::GComputation                comp,
                              cv::GCompileArgs                compile_args,
                              const size_t                    /*call_every_nth*/,
                              std::shared_ptr<SubGraphState>& state,
                              const cv::GCompileArgs&         /*args*/) {
                state.reset(new SubGraphState{});
                state->cc = comp.compile(in, std::move(compile_args));
                auto out_desc =
                    cv::util::get<cv::GMatDesc>(state->cc.outMetas()[0]);
                utils::createNDMat(state->last_result,
                                   out_desc.dims,
                                   out_desc.depth);
            }

            static void run(const cv::Mat&   in,
                            cv::GComputation /*comp*/,
                            cv::GCompileArgs /*compile_args*/,
                            const size_t     call_every_nth,
                            cv::Mat&         out,
                            SubGraphState&   state) {
                // NB: Make a call on the first iteration and skip the furthers.
                if (state.call_counter == 0) {
                    state.cc(in, state.last_result);
                }
                state.last_result.copyTo(out);
                state.call_counter = (state.call_counter + 1) % call_every_nth;
            }
    };

    void operator()(const cv::GProtoArgs& inputs, cv::GProtoArgs& outputs);

    size_t numInputs()  const { return 1; }
    size_t numOutputs() const { return 1; }

    cv::GComputation comp;
    cv::GCompileArgs compile_args;
    size_t           call_every_nth;
};

void SubGraphCall::operator()(const cv::GProtoArgs& inputs,
                                    cv::GProtoArgs& outputs) {
    GAPI_Assert(inputs.size() == 1u);
    GAPI_Assert(cv::util::holds_alternative<cv::GMat>(inputs[0]));
    GAPI_Assert(outputs.empty());
    auto in = cv::util::get<cv::GMat>(inputs[0]);
    outputs.emplace_back(GSubGraph::on(in, comp, compile_args, call_every_nth));
}

struct DummyCall {
    G_API_OP(GDummy,
             <cv::GMat(cv::GMat, double, OutputDescr)>,
             "custom.dummy") {
        static cv::GMatDesc outMeta(const cv::GMatDesc& /* in */,
                                    double              /* time */,
                                    const OutputDescr& output) {
            if (output.dims.size() == 2) {
                return cv::GMatDesc(output.precision,
                                    1,
                                    // NB: Dims[H, W] -> Size(W, H)
                                    cv::Size(output.dims[1], output.dims[0]));
            }
            return cv::GMatDesc(output.precision, output.dims);
        }
    };

    struct DummyState {
        cv::Mat mat;
    };

    // NB: Generate random mat once and then
    // copy to dst buffer on every iteration.
    GAPI_OCV_KERNEL_ST(GCPUDummy, GDummy, DummyState) {
            static void setup(const cv::GMatDesc&          /*in*/,
                              double                       /*time*/,
                              const OutputDescr&           output,
                              std::shared_ptr<DummyState>& state,
                              const cv::GCompileArgs&      /*args*/) {
            state.reset(new DummyState{});
            utils::createNDMat(state->mat, output.dims, output.precision);
            utils::generateRandom(state->mat);
        }

        static void run(const cv::Mat&     /*in_mat*/,
                        double             time,
                        const OutputDescr& /*output*/,
                        cv::Mat&           out_mat,
                        DummyState&        state) {
            using namespace std::chrono;
            auto start_ts = utils::timestamp<utils::double_ms_t>();
            state.mat.copyTo(out_mat);
            auto elapsed = utils::timestamp<utils::double_ms_t>() - start_ts;
            utils::busyWait(duration_cast<microseconds>(utils::double_ms_t{time-elapsed}));
        }
    };

    void operator()(const cv::GProtoArgs& inputs, cv::GProtoArgs& outputs);

    size_t numInputs()  const { return 1; }
    size_t numOutputs() const { return 1; }

    double      time;
    OutputDescr output;
};

void DummyCall::operator()(const cv::GProtoArgs& inputs,
                                 cv::GProtoArgs& outputs) {
    GAPI_Assert(inputs.size() == 1u);
    GAPI_Assert(cv::util::holds_alternative<cv::GMat>(inputs[0]));
    GAPI_Assert(outputs.empty());
    auto in = cv::util::get<cv::GMat>(inputs[0]);
    outputs.emplace_back(GDummy::on(in, time, output));
}

struct InferCall {
    void operator()(const cv::GProtoArgs& inputs, cv::GProtoArgs& outputs);
    size_t numInputs()  const { return input_layers.size();  }
    size_t numOutputs() const { return output_layers.size(); }

    std::string               tag;
    std::vector<std::string>  input_layers;
    std::vector<std::string>  output_layers;
};

void InferCall::operator()(const cv::GProtoArgs& inputs,
                                 cv::GProtoArgs& outputs) {
    GAPI_Assert(inputs.size() == input_layers.size());
    GAPI_Assert(outputs.empty());

    cv::GInferInputs g_inputs;
    // TODO: Add an opportunity not specify input/output layers in case
    // there is only single layer.
    for (size_t i = 0; i < inputs.size(); ++i) {
        // TODO: Support GFrame as well.
        GAPI_Assert(cv::util::holds_alternative<cv::GMat>(inputs[i]));
        auto in = cv::util::get<cv::GMat>(inputs[i]);
        g_inputs[input_layers[i]] = in;
    }
    auto g_outputs = cv::gapi::infer<cv::gapi::Generic>(tag, g_inputs);
    for (size_t i = 0; i < output_layers.size(); ++i) {
        outputs.emplace_back(g_outputs.at(output_layers[i]));
    }
}

struct SourceCall {
    void operator()(const cv::GProtoArgs& inputs, cv::GProtoArgs& outputs);
    size_t numInputs()  const { return 0; }
    size_t numOutputs() const { return 1; }
};

void SourceCall::operator()(const cv::GProtoArgs& inputs,
                                  cv::GProtoArgs& outputs) {
    GAPI_Assert(inputs.empty());
    GAPI_Assert(outputs.empty());
    // NB: Since NV12 isn't exposed source always produce GMat.
    outputs.emplace_back(cv::GMat());
}

struct LoadPath {
    std::string xml;
    std::string bin;
};

struct ImportPath {
    std::string blob;
};

using ModelPath = cv::util::variant<ImportPath, LoadPath>;

struct DummyParams {
    double      time;
    OutputDescr output;
};

struct InferParams {
    std::string name;
    ModelPath   path;
    std::string device;
    std::vector<std::string> input_layers;
    std::vector<std::string> output_layers;
    std::map<std::string, std::string> config;
    cv::gapi::ie::InferMode mode;
    cv::util::optional<int> out_precision;
};

class ElapsedTimeCriterion : public StopCriterion {
public:
    ElapsedTimeCriterion(int64_t work_time_mcs);

    void start() override;
    void iter()  override;
    bool done()  override;

private:
    int64_t m_work_time_mcs;
    int64_t m_start_ts = -1;
    int64_t m_curr_ts  = -1;
};

ElapsedTimeCriterion::ElapsedTimeCriterion(int64_t work_time_mcs)
    : m_work_time_mcs(work_time_mcs) {
};

void ElapsedTimeCriterion::start() {
    m_start_ts = m_curr_ts = utils::timestamp<std::chrono::microseconds>();
}

void ElapsedTimeCriterion::iter() {
    m_curr_ts = utils::timestamp<std::chrono::microseconds>();
}

bool ElapsedTimeCriterion::done() {
    return (m_curr_ts - m_start_ts) >= m_work_time_mcs;
}

class NumItersCriterion : public StopCriterion {
public:
    NumItersCriterion(int64_t num_iters);

    void start() override;
    void iter()  override;
    bool done()  override;

private:
    int64_t m_num_iters;
    int64_t m_curr_iters = 0;
};

NumItersCriterion::NumItersCriterion(int64_t num_iters)
    : m_num_iters(num_iters) {
}

void NumItersCriterion::start() {
    m_curr_iters = 0;
}

void NumItersCriterion::iter() {
    ++m_curr_iters;
}

bool NumItersCriterion::done() {
    return m_curr_iters == m_num_iters;
}

class PipelineBuilder {
public:
    PipelineBuilder();
    void addDummy(const CallParams&  call_params,
                  const DummyParams& dummy_params);

    void addInfer(const CallParams&  call_params,
                  const InferParams& infer_params);

    void setSource(const std::string&           name,
                   std::shared_ptr<DummySource> src);

    void addEdge(const Edge& edge);
    void setMode(PLMode mode);
    void setDumpFilePath(const std::string& dump);
    void setQueueCapacity(const size_t qc);
    void setName(const std::string& name);
    void setStopCriterion(StopCriterion::Ptr stop_criterion);

    Pipeline::Ptr build();

private:
    template <typename CallT>
    void addCall(const CallParams& call_params,
                 CallT&&           call);

    Pipeline::Ptr construct();

    template <typename K, typename V>
    using M = std::unordered_map<K, V>;
    struct State {
        struct NodeEdges {
            std::vector<Edge> input_edges;
            std::vector<Edge> output_edges;
        };

        M<std::string, Node::Ptr>    calls_map;
        std::vector<Node::Ptr>       all_calls;

        cv::gapi::GNetPackage        networks;
        cv::gapi::GKernelPackage     kernels;
        cv::GCompileArgs             compile_args;
        std::shared_ptr<DummySource> src;
        PLMode                       mode = PLMode::STREAMING;
        std::string                  name;
        StopCriterion::Ptr           stop_criterion;
    };

    std::unique_ptr<State> m_state;
};

PipelineBuilder::PipelineBuilder() : m_state(new State{}) { };

void PipelineBuilder::addDummy(const CallParams&  call_params,
                               const DummyParams& dummy_params) {
    m_state->kernels.include<DummyCall::GCPUDummy>();
    addCall(call_params,
            DummyCall{dummy_params.time, dummy_params.output});
}

template <typename CallT>
void PipelineBuilder::addCall(const CallParams& call_params,
                              CallT&&           call) {

    size_t num_inputs  = call.numInputs();
    size_t num_outputs = call.numOutputs();
    Node::Ptr call_node(new Node{{},{},Node::Kind{CallNode{call_params,
                                                           std::move(call)}}});
    // NB: Create placeholders for inputs.
    call_node->in_nodes.resize(num_inputs);
    // NB: Create outputs with empty data.
    for (size_t i = 0; i < num_outputs; ++i) {
        call_node->out_nodes.emplace_back(new Node{{call_node},
                                                   {},
                                                   Node::Kind{DataNode{}}});
    }

    auto it = m_state->calls_map.find(call_params.name);
    if (it != m_state->calls_map.end()) {
        throw std::logic_error("Node: " + call_params.name + " already exists!");
    }
    m_state->calls_map.emplace(call_params.name, call_node);
    m_state->all_calls.emplace_back(call_node);
}

void PipelineBuilder::addInfer(const CallParams&  call_params,
                               const InferParams& infer_params) {
    // NB: No default ctor for Params.
    std::unique_ptr<cv::gapi::ie::Params<cv::gapi::Generic>> pp;
    if (cv::util::holds_alternative<LoadPath>(infer_params.path)) {
       auto load_path = cv::util::get<LoadPath>(infer_params.path);
       pp.reset(new cv::gapi::ie::Params<cv::gapi::Generic>(call_params.name,
                                                            load_path.xml,
                                                            load_path.bin,
                                                            infer_params.device));
    } else {
        GAPI_Assert(cv::util::holds_alternative<ImportPath>(infer_params.path));
        auto import_path = cv::util::get<ImportPath>(infer_params.path);
        pp.reset(new cv::gapi::ie::Params<cv::gapi::Generic>(call_params.name,
                                                             import_path.blob,
                                                             infer_params.device));
    }

    pp->pluginConfig(infer_params.config);
    pp->cfgInferMode(infer_params.mode);
    if (infer_params.out_precision) {
        pp->cfgOutputPrecision(infer_params.out_precision.value());
    }
    m_state->networks += cv::gapi::networks(*pp);

    addCall(call_params,
            InferCall{call_params.name,
                      infer_params.input_layers,
                      infer_params.output_layers});
}

void PipelineBuilder::addEdge(const Edge& edge) {
    const auto& src_it = m_state->calls_map.find(edge.src.name);
    if (src_it == m_state->calls_map.end()) {
        throw std::logic_error("Failed to find node: " + edge.src.name);
    }
    auto src_node = src_it->second;
    if (src_node->out_nodes.size() <= edge.src.port) {
        throw std::logic_error("Failed to access node: " + edge.src.name +
                               " by out port: " + std::to_string(edge.src.port));
    }

    auto dst_it = m_state->calls_map.find(edge.dst.name);
    if (dst_it == m_state->calls_map.end()) {
        throw std::logic_error("Failed to find node: " + edge.dst.name);
    }
    auto dst_node = dst_it->second;
    if (dst_node->in_nodes.size() <= edge.dst.port) {
        throw std::logic_error("Failed to access node: " + edge.dst.name +
                               " by in port: " + std::to_string(edge.dst.port));
    }

    auto  out_data = src_node->out_nodes[edge.src.port];
    auto& in_data  = dst_node->in_nodes[edge.dst.port];
    // NB: in_data != nullptr.
    if (!in_data.expired()) {
        throw std::logic_error("Node: " + edge.dst.name +
                               " already connected by in port: " +
                               std::to_string(edge.dst.port));
    }
    dst_node->in_nodes[edge.dst.port] = out_data;
    out_data->out_nodes.push_back(dst_node);
}

void PipelineBuilder::setSource(const std::string&           name,
                                std::shared_ptr<DummySource> src) {
    GAPI_Assert(!m_state->src && "Only single source pipelines are supported!");
    m_state->src = src;
    addCall(CallParams{name, 1u/*call_every_nth*/}, SourceCall{});
}

void PipelineBuilder::setMode(PLMode mode) {
    m_state->mode = mode;
}

void PipelineBuilder::setDumpFilePath(const std::string& dump) {
    m_state->compile_args.emplace_back(cv::graph_dump_path{dump});
}

void PipelineBuilder::setQueueCapacity(const size_t qc) {
    m_state->compile_args.emplace_back(cv::gapi::streaming::queue_capacity{qc});
}

void PipelineBuilder::setName(const std::string& name) {
    m_state->name = name;
}

void PipelineBuilder::setStopCriterion(StopCriterion::Ptr stop_criterion) {
    m_state->stop_criterion = std::move(stop_criterion);
}

static bool visit(Node::Ptr node,
                  std::vector<Node::Ptr>& sorted,
                  std::unordered_map<Node::Ptr, int>& visited) {
    if (!node) {
        throw std::logic_error("Found null node");
    }

    visited[node] = 1;
    for (auto in : node->in_nodes) {
        auto in_node = in.lock();
        if (visited[in_node] == 0) {
            if (visit(in_node, sorted, visited)) {
                return true;
            }
        } else if (visited[in_node] == 1) {
            return true;
        }
    }
    visited[node] = 2;
    sorted.push_back(node);
    return false;
}

static cv::optional<std::vector<Node::Ptr>>
toposort(const std::vector<Node::Ptr> nodes) {
    std::vector<Node::Ptr> sorted;
    std::unordered_map<Node::Ptr, int> visited;
    for (auto n : nodes) {
        if (visit(n, sorted, visited)) {
            return cv::optional<std::vector<Node::Ptr>>{};
        }
    }
    return cv::util::make_optional(sorted);
}

Pipeline::Ptr PipelineBuilder::construct() {
    // NB: Unlike G-API, pipeline_builder_tool graph always starts with CALL node
    // (not data) that produce datas, so the call node which doesn't have
    // inputs is considered as "producer" node.
    //
    // Graph always starts with CALL node and ends with DATA node.
    // Graph example: [source] -> (source:0) -> [PP] -> (PP:0)
    //
    // The algorithm is quite simple:
    // 0. Verify that every call input node exists (connected).
    // 1. Sort all nodes by visiting only call nodes,
    // since there is no data nodes that's not connected with any call node,
    // it's guarantee that every node will be visited.
    // 2. Fillter call nodes.
    // 3. Go through every call node.
    // FIXME: Add toposort in case user passed nodes
    // in arbitrary order which is unlikely happened.
    // 4. Extract proto input from every input node
    // 5. Run call and get outputs
    // 6. If call node doesn't have inputs it means that it's "producer" node,
    // so collect all outputs to graph_inputs vector.
    // 7. Assign proto outputs to output data nodes,
    // so the next calls can use them as inputs.
    cv::GProtoArgs graph_inputs;
    cv::GProtoArgs graph_outputs;
    // 0. Verify that every call input node exists (connected).
    for (auto call_node : m_state->all_calls) {
        for (size_t i = 0; i < call_node->in_nodes.size(); ++i) {
            const auto& in_data_node = call_node->in_nodes[i];
            // NB: in_data_node == nullptr.
            if (in_data_node.expired()) {
                const auto& call = cv::util::get<CallNode>(call_node->kind);
                throw std::logic_error(
                        "Node: " + call.params.name + " in Pipeline: " + m_state->name +
                        " has dangling input by in port: " + std::to_string(i));
            }
        }
    }
    // (0) Sort all nodes;
    auto has_sorted = toposort(m_state->all_calls);
    if (!has_sorted) {
       throw std::logic_error(
               "Pipeline: " + m_state->name + " has cyclic dependencies") ;
    }
    auto& sorted = has_sorted.value();
    // (1). Fillter call nodes.
    std::vector<Node::Ptr> sorted_calls;
    for (auto n : sorted) {
        if (cv::util::holds_alternative<CallNode>(n->kind)) {
            sorted_calls.push_back(n);
        }
    }

    m_state->kernels.include<SubGraphCall::SubGraphImpl>();
    m_state->compile_args.emplace_back(m_state->networks);
    m_state->compile_args.emplace_back(m_state->kernels);

    // (2). Go through every call node.
    for (auto call_node : sorted_calls) {
        auto& call = cv::util::get<CallNode>(call_node->kind);
        cv::GProtoArgs outputs;
        cv::GProtoArgs inputs;
        for (size_t i = 0; i < call_node->in_nodes.size(); ++i) {
            auto in_node = call_node->in_nodes.at(i);
            auto in_data = cv::util::get<DataNode>(in_node.lock()->kind);
            if (!in_data.arg.has_value()) {
                throw std::logic_error("data hasn't been provided");
            }
            // (3). Extract proto input from every input node.
            inputs.push_back(in_data.arg.value());
        }
        // NB: If node shouldn't be called on each iterations,
        // it should be wrapped into subgraph which is able to skip calling.
        if (call.params.call_every_nth != 1u) {
            // FIXME: Limitation of the subgraph operation (<GMat(GMat)>).
            // G-API doesn't support dynamic number of inputs/outputs.
            if (inputs.size() > 1u) {
                throw std::logic_error(
                        "skip_frame_nth is supported only for single input subgraphs\n"
                        "Current subgraph has " + std::to_string(inputs.size()) + " inputs");
            }

            if (outputs.size() > 1u) {
                throw std::logic_error(
                        "skip_frame_nth is supported only for single output subgraphs\n"
                        "Current subgraph has " + std::to_string(inputs.size()) + " outputs");
            }
            // FIXME: Should be generalized.
            // Now every subgraph contains only single node
            // which has single input/output.
            GAPI_Assert(cv::util::holds_alternative<cv::GMat>(inputs[0]));
            cv::GProtoArgs subgr_inputs{cv::GProtoArg{cv::GMat()}};
            cv::GProtoArgs subgr_outputs;
            call.run(subgr_inputs, subgr_outputs);
            auto comp = cv::GComputation(cv::GProtoInputArgs{subgr_inputs},
                                         cv::GProtoOutputArgs{subgr_outputs});
            call = CallNode{CallParams{call.params.name, 1u/*call_every_nth*/},
                            SubGraphCall{std::move(comp),
                                         m_state->compile_args,
                                         call.params.call_every_nth}};
        }
        // (4). Run call and get outputs.
        call.run(inputs, outputs);
        // (5) If call node doesn't have inputs
        // it means that it's input producer node (Source).
        if (call_node->in_nodes.empty()) {
            for (auto out : outputs) {
                graph_inputs.push_back(out);
            }
        }
        // (6). Assign proto outputs to output data nodes,
        // so the next calls can use them as inputs.
        GAPI_Assert(outputs.size() == call_node->out_nodes.size());
        for (size_t i = 0; i < outputs.size(); ++i) {
            auto out_node = call_node->out_nodes[i];
            auto& out_data = cv::util::get<DataNode>(out_node->kind);
            out_data.arg = cv::util::make_optional(outputs[i]);
            if (out_node->out_nodes.empty()) {
                graph_outputs.push_back(out_data.arg.value());
            }
        }
    }

    GAPI_Assert(m_state->stop_criterion);
    GAPI_Assert(graph_inputs.size() == 1);
    GAPI_Assert(cv::util::holds_alternative<cv::GMat>(graph_inputs[0]));
    // FIXME: Handle GFrame when NV12 comes.
    const auto& graph_input = cv::util::get<cv::GMat>(graph_inputs[0]);
    graph_outputs.emplace_back(
            cv::gapi::streaming::timestamp(graph_input).strip());
    graph_outputs.emplace_back(
            cv::gapi::streaming::seq_id(graph_input).strip());

    if (m_state->mode == PLMode::STREAMING) {
        return std::make_shared<StreamingPipeline>(std::move(m_state->name),
                                                   cv::GComputation(
                                                       cv::GProtoInputArgs{graph_inputs},
                                                       cv::GProtoOutputArgs{graph_outputs}),
                                                   std::move(m_state->src),
                                                   std::move(m_state->stop_criterion),
                                                   std::move(m_state->compile_args),
                                                   graph_outputs.size());
    }
    GAPI_Assert(m_state->mode == PLMode::REGULAR);
    return std::make_shared<RegularPipeline>(std::move(m_state->name),
                                             cv::GComputation(
                                                 cv::GProtoInputArgs{graph_inputs},
                                                 cv::GProtoOutputArgs{graph_outputs}),
                                             std::move(m_state->src),
                                             std::move(m_state->stop_criterion),
                                             std::move(m_state->compile_args),
                                             graph_outputs.size());
}

Pipeline::Ptr PipelineBuilder::build() {
    auto pipeline = construct();
    m_state.reset(new State{});
    return pipeline;
}

#endif // OPENCV_GAPI_PIPELINE_MODELING_TOOL_PIPELINE_BUILDER_HPP