File: semantic_segmentation.cpp

package info (click to toggle)
opencv 4.10.0%2Bdfsg-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 282,092 kB
  • sloc: cpp: 1,178,079; xml: 682,621; python: 49,092; lisp: 31,150; java: 25,469; ansic: 11,039; javascript: 6,085; sh: 1,214; cs: 601; perl: 494; objc: 210; makefile: 173
file content (284 lines) | stat: -rw-r--r-- 9,438 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
#include <opencv2/imgproc.hpp>
#include <opencv2/gapi/infer/ie.hpp>
#include <opencv2/gapi/cpu/gcpukernel.hpp>
#include <opencv2/gapi/streaming/cap.hpp>
#include <opencv2/gapi/operators.hpp>
#include <opencv2/highgui.hpp>

#include <opencv2/gapi/streaming/desync.hpp>
#include <opencv2/gapi/streaming/format.hpp>

#include <iomanip>

const std::string keys =
    "{ h help |                                     | Print this help message }"
    "{ desync | false                               | Desynchronize inference }"
    "{ input  |                                     | Path to the input video file }"
    "{ output |                                     | Path to the output video file }"
    "{ ssm    | semantic-segmentation-adas-0001.xml | Path to OpenVINO IE semantic segmentation model (.xml) }";

// 20 colors for 20 classes of semantic-segmentation-adas-0001
static std::vector<cv::Vec3b> colors = {
    { 0, 0, 0 },
    { 0, 0, 128 },
    { 0, 128, 0 },
    { 0, 128, 128 },
    { 128, 0, 0 },
    { 128, 0, 128 },
    { 128, 128, 0 },
    { 128, 128, 128 },
    { 0, 0, 64 },
    { 0, 0, 192 },
    { 0, 128, 64 },
    { 0, 128, 192 },
    { 128, 0, 64 },
    { 128, 0, 192 },
    { 128, 128, 64 },
    { 128, 128, 192 },
    { 0, 64, 0 },
    { 0, 64, 128 },
    { 0, 192, 0 },
    { 0, 192, 128 },
    { 128, 64, 0 }
};

namespace {
std::string get_weights_path(const std::string &model_path) {
    const auto EXT_LEN = 4u;
    const auto sz = model_path.size();
    CV_Assert(sz > EXT_LEN);

    auto ext = model_path.substr(sz - EXT_LEN);
    std::transform(ext.begin(), ext.end(), ext.begin(), [](unsigned char c){
        return static_cast<unsigned char>(std::tolower(c));
    });
    CV_Assert(ext == ".xml");
    return model_path.substr(0u, sz - EXT_LEN) + ".bin";
}

bool isNumber(const std::string &str) {
    return !str.empty() && std::all_of(str.begin(), str.end(),
            [](unsigned char ch) { return std::isdigit(ch); });
}

std::string toStr(double value) {
    std::stringstream ss;
    ss << std::fixed << std::setprecision(1) << value;
    return ss.str();
}

void classesToColors(const cv::Mat &out_blob,
                           cv::Mat &mask_img) {
    const int H = out_blob.size[0];
    const int W = out_blob.size[1];

    mask_img.create(H, W, CV_8UC3);
    GAPI_Assert(out_blob.type() == CV_8UC1);
    const uint8_t* const classes = out_blob.ptr<uint8_t>();

    for (int rowId = 0; rowId < H; ++rowId) {
        for (int colId = 0; colId < W; ++colId) {
            uint8_t class_id = classes[rowId * W + colId];
            mask_img.at<cv::Vec3b>(rowId, colId) =
                class_id < colors.size()
                ? colors[class_id]
                : cv::Vec3b{0, 0, 0}; // NB: sample supports 20 classes
        }
    }
}

void probsToClasses(const cv::Mat& probs, cv::Mat& classes) {
     const int C = probs.size[1];
     const int H = probs.size[2];
     const int W = probs.size[3];

     classes.create(H, W, CV_8UC1);
     GAPI_Assert(probs.depth() == CV_32F);
     float* out_p       = reinterpret_cast<float*>(probs.data);
     uint8_t* classes_p = reinterpret_cast<uint8_t*>(classes.data);

     for (int h = 0; h < H; ++h) {
         for (int w = 0; w < W; ++w) {
             double max = 0;
             int class_id = 0;
             for (int c = 0; c < C; ++c) {
                int idx = c * H * W + h * W + w;
                    if (out_p[idx] > max) {
                        max = out_p[idx];
                        class_id = c;
                    }
             }
             classes_p[h * W + w] = static_cast<uint8_t>(class_id);
         }
     }
}

} // anonymous namespace

namespace vis {

static void putText(cv::Mat& mat, const cv::Point &position, const std::string &message) {
    auto fontFace = cv::FONT_HERSHEY_COMPLEX;
    int thickness = 2;
    cv::Scalar color = {200, 10, 10};
    double fontScale = 0.65;

    cv::putText(mat, message, position, fontFace,
                fontScale, cv::Scalar(255, 255, 255), thickness + 1);
    cv::putText(mat, message, position, fontFace, fontScale, color, thickness);
}

static void drawResults(cv::Mat &img, const cv::Mat &color_mask) {
    img = img / 2 + color_mask / 2;
}

} // namespace vis

namespace custom {
G_API_OP(PostProcessing, <cv::GMat(cv::GMat, cv::GMat)>, "sample.custom.post_processing") {
    static cv::GMatDesc outMeta(const cv::GMatDesc &in, const cv::GMatDesc &) {
        return in;
    }
};

GAPI_OCV_KERNEL(OCVPostProcessing, PostProcessing) {
    static void run(const cv::Mat &in, const cv::Mat &out_blob, cv::Mat &out) {
        int C = -1, H = -1, W = -1;
        if (out_blob.size.dims() == 4u) {
            C = 1; H = 2, W = 3;
        } else if (out_blob.size.dims() == 3u) {
            C = 0; H = 1, W = 2;
        } else {
            throw std::logic_error(
                    "Number of dimmensions for model output must be 3 or 4!");
        }
        cv::Mat classes;
        // NB: If output has more than single plane, it contains probabilities
        // otherwise class id.
        if (out_blob.size[C] > 1) {
            probsToClasses(out_blob, classes);
        } else {
            if (out_blob.depth() != CV_32S) {
                throw std::logic_error(
                        "Single channel output must have integer precision!");
            }
            cv::Mat view(out_blob.size[H], // cols
                         out_blob.size[W], // rows
                         CV_32SC1,
                         out_blob.data);
            view.convertTo(classes, CV_8UC1);
        }
        cv::Mat mask_img;
        classesToColors(classes, mask_img);
        cv::resize(mask_img, out, in.size(), 0, 0, cv::INTER_NEAREST);
    }
};
} // namespace custom

int main(int argc, char *argv[]) {
    cv::CommandLineParser cmd(argc, argv, keys);
    if (cmd.has("help")) {
        cmd.printMessage();
        return 0;
    }

    // Prepare parameters first
    const std::string input  = cmd.get<std::string>("input");
    const std::string output = cmd.get<std::string>("output");
    const auto model_path    = cmd.get<std::string>("ssm");
    const bool desync        = cmd.get<bool>("desync");
    const auto weights_path  = get_weights_path(model_path);
    const auto device        = "CPU";
    G_API_NET(SemSegmNet, <cv::GMat(cv::GMat)>, "semantic-segmentation");
    const auto net = cv::gapi::ie::Params<SemSegmNet> {
        model_path, weights_path, device
    };
    const auto kernels = cv::gapi::kernels<custom::OCVPostProcessing>();
    const auto networks = cv::gapi::networks(net);

    // Now build the graph
    cv::GMat in;
    cv::GMat bgr = cv::gapi::copy(in);
    cv::GMat frame = desync ? cv::gapi::streaming::desync(bgr) : bgr;
    cv::GMat out_blob = cv::gapi::infer<SemSegmNet>(frame);
    cv::GMat out = custom::PostProcessing::on(frame, out_blob);

    cv::GStreamingCompiled pipeline = cv::GComputation(cv::GIn(in), cv::GOut(bgr, out))
        .compileStreaming(cv::compile_args(kernels, networks,
                          cv::gapi::streaming::queue_capacity{1}));

    std::shared_ptr<cv::gapi::wip::GCaptureSource> source;
    if (isNumber(input)) {
        source = std::make_shared<cv::gapi::wip::GCaptureSource>(
            std::stoi(input),
            std::map<int, double> {
              {cv::CAP_PROP_FRAME_WIDTH, 1280},
              {cv::CAP_PROP_FRAME_HEIGHT, 720},
              {cv::CAP_PROP_BUFFERSIZE, 1},
              {cv::CAP_PROP_AUTOFOCUS, true}
            }
        );
    } else {
        source = std::make_shared<cv::gapi::wip::GCaptureSource>(input);
    }
    auto inputs = cv::gin(
            static_cast<cv::gapi::wip::IStreamSource::Ptr>(source));

    // The execution part
    pipeline.setSource(std::move(inputs));

    cv::TickMeter tm;
    cv::VideoWriter writer;

    cv::util::optional<cv::Mat> color_mask;
    cv::util::optional<cv::Mat> image;
    cv::Mat last_image;
    cv::Mat last_color_mask;

    pipeline.start();
    tm.start();

    std::size_t frames = 0u;
    std::size_t masks  = 0u;
    while (pipeline.pull(cv::gout(image, color_mask))) {
        if (image.has_value()) {
            ++frames;
            last_image = std::move(*image);
        }

        if (color_mask.has_value()) {
            ++masks;
            last_color_mask = std::move(*color_mask);
        }

        if (!last_image.empty() && !last_color_mask.empty()) {
            tm.stop();

            std::string stream_fps = "Stream FPS: " + toStr(frames / tm.getTimeSec());
            std::string inference_fps = "Inference FPS: " + toStr(masks  / tm.getTimeSec());

            cv::Mat tmp = last_image.clone();

            vis::drawResults(tmp, last_color_mask);
            vis::putText(tmp, {10, 22}, stream_fps);
            vis::putText(tmp, {10, 22 + 30}, inference_fps);

            cv::imshow("Out", tmp);
            cv::waitKey(1);
            if (!output.empty()) {
                if (!writer.isOpened()) {
                    const auto sz = cv::Size{tmp.cols, tmp.rows};
                    writer.open(output, cv::VideoWriter::fourcc('M','J','P','G'), 25.0, sz);
                    CV_Assert(writer.isOpened());
                }
                writer << tmp;
            }

            tm.start();
        }
    }
    tm.stop();
    std::cout << "Processed " << frames << " frames" << " ("
              << frames / tm.getTimeSec()<< " FPS)" << std::endl;
    return 0;
}