1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
|
#include <opencv2/imgproc.hpp>
#include <opencv2/gapi/infer/ie.hpp>
#include <opencv2/gapi/cpu/gcpukernel.hpp>
#include <opencv2/gapi/streaming/cap.hpp>
#include <opencv2/gapi/operators.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/gapi/streaming/desync.hpp>
#include <opencv2/gapi/streaming/format.hpp>
#include <iomanip>
const std::string keys =
"{ h help | | Print this help message }"
"{ desync | false | Desynchronize inference }"
"{ input | | Path to the input video file }"
"{ output | | Path to the output video file }"
"{ ssm | semantic-segmentation-adas-0001.xml | Path to OpenVINO IE semantic segmentation model (.xml) }";
// 20 colors for 20 classes of semantic-segmentation-adas-0001
static std::vector<cv::Vec3b> colors = {
{ 0, 0, 0 },
{ 0, 0, 128 },
{ 0, 128, 0 },
{ 0, 128, 128 },
{ 128, 0, 0 },
{ 128, 0, 128 },
{ 128, 128, 0 },
{ 128, 128, 128 },
{ 0, 0, 64 },
{ 0, 0, 192 },
{ 0, 128, 64 },
{ 0, 128, 192 },
{ 128, 0, 64 },
{ 128, 0, 192 },
{ 128, 128, 64 },
{ 128, 128, 192 },
{ 0, 64, 0 },
{ 0, 64, 128 },
{ 0, 192, 0 },
{ 0, 192, 128 },
{ 128, 64, 0 }
};
namespace {
std::string get_weights_path(const std::string &model_path) {
const auto EXT_LEN = 4u;
const auto sz = model_path.size();
CV_Assert(sz > EXT_LEN);
auto ext = model_path.substr(sz - EXT_LEN);
std::transform(ext.begin(), ext.end(), ext.begin(), [](unsigned char c){
return static_cast<unsigned char>(std::tolower(c));
});
CV_Assert(ext == ".xml");
return model_path.substr(0u, sz - EXT_LEN) + ".bin";
}
bool isNumber(const std::string &str) {
return !str.empty() && std::all_of(str.begin(), str.end(),
[](unsigned char ch) { return std::isdigit(ch); });
}
std::string toStr(double value) {
std::stringstream ss;
ss << std::fixed << std::setprecision(1) << value;
return ss.str();
}
void classesToColors(const cv::Mat &out_blob,
cv::Mat &mask_img) {
const int H = out_blob.size[0];
const int W = out_blob.size[1];
mask_img.create(H, W, CV_8UC3);
GAPI_Assert(out_blob.type() == CV_8UC1);
const uint8_t* const classes = out_blob.ptr<uint8_t>();
for (int rowId = 0; rowId < H; ++rowId) {
for (int colId = 0; colId < W; ++colId) {
uint8_t class_id = classes[rowId * W + colId];
mask_img.at<cv::Vec3b>(rowId, colId) =
class_id < colors.size()
? colors[class_id]
: cv::Vec3b{0, 0, 0}; // NB: sample supports 20 classes
}
}
}
void probsToClasses(const cv::Mat& probs, cv::Mat& classes) {
const int C = probs.size[1];
const int H = probs.size[2];
const int W = probs.size[3];
classes.create(H, W, CV_8UC1);
GAPI_Assert(probs.depth() == CV_32F);
float* out_p = reinterpret_cast<float*>(probs.data);
uint8_t* classes_p = reinterpret_cast<uint8_t*>(classes.data);
for (int h = 0; h < H; ++h) {
for (int w = 0; w < W; ++w) {
double max = 0;
int class_id = 0;
for (int c = 0; c < C; ++c) {
int idx = c * H * W + h * W + w;
if (out_p[idx] > max) {
max = out_p[idx];
class_id = c;
}
}
classes_p[h * W + w] = static_cast<uint8_t>(class_id);
}
}
}
} // anonymous namespace
namespace vis {
static void putText(cv::Mat& mat, const cv::Point &position, const std::string &message) {
auto fontFace = cv::FONT_HERSHEY_COMPLEX;
int thickness = 2;
cv::Scalar color = {200, 10, 10};
double fontScale = 0.65;
cv::putText(mat, message, position, fontFace,
fontScale, cv::Scalar(255, 255, 255), thickness + 1);
cv::putText(mat, message, position, fontFace, fontScale, color, thickness);
}
static void drawResults(cv::Mat &img, const cv::Mat &color_mask) {
img = img / 2 + color_mask / 2;
}
} // namespace vis
namespace custom {
G_API_OP(PostProcessing, <cv::GMat(cv::GMat, cv::GMat)>, "sample.custom.post_processing") {
static cv::GMatDesc outMeta(const cv::GMatDesc &in, const cv::GMatDesc &) {
return in;
}
};
GAPI_OCV_KERNEL(OCVPostProcessing, PostProcessing) {
static void run(const cv::Mat &in, const cv::Mat &out_blob, cv::Mat &out) {
int C = -1, H = -1, W = -1;
if (out_blob.size.dims() == 4u) {
C = 1; H = 2, W = 3;
} else if (out_blob.size.dims() == 3u) {
C = 0; H = 1, W = 2;
} else {
throw std::logic_error(
"Number of dimmensions for model output must be 3 or 4!");
}
cv::Mat classes;
// NB: If output has more than single plane, it contains probabilities
// otherwise class id.
if (out_blob.size[C] > 1) {
probsToClasses(out_blob, classes);
} else {
if (out_blob.depth() != CV_32S) {
throw std::logic_error(
"Single channel output must have integer precision!");
}
cv::Mat view(out_blob.size[H], // cols
out_blob.size[W], // rows
CV_32SC1,
out_blob.data);
view.convertTo(classes, CV_8UC1);
}
cv::Mat mask_img;
classesToColors(classes, mask_img);
cv::resize(mask_img, out, in.size(), 0, 0, cv::INTER_NEAREST);
}
};
} // namespace custom
int main(int argc, char *argv[]) {
cv::CommandLineParser cmd(argc, argv, keys);
if (cmd.has("help")) {
cmd.printMessage();
return 0;
}
// Prepare parameters first
const std::string input = cmd.get<std::string>("input");
const std::string output = cmd.get<std::string>("output");
const auto model_path = cmd.get<std::string>("ssm");
const bool desync = cmd.get<bool>("desync");
const auto weights_path = get_weights_path(model_path);
const auto device = "CPU";
G_API_NET(SemSegmNet, <cv::GMat(cv::GMat)>, "semantic-segmentation");
const auto net = cv::gapi::ie::Params<SemSegmNet> {
model_path, weights_path, device
};
const auto kernels = cv::gapi::kernels<custom::OCVPostProcessing>();
const auto networks = cv::gapi::networks(net);
// Now build the graph
cv::GMat in;
cv::GMat bgr = cv::gapi::copy(in);
cv::GMat frame = desync ? cv::gapi::streaming::desync(bgr) : bgr;
cv::GMat out_blob = cv::gapi::infer<SemSegmNet>(frame);
cv::GMat out = custom::PostProcessing::on(frame, out_blob);
cv::GStreamingCompiled pipeline = cv::GComputation(cv::GIn(in), cv::GOut(bgr, out))
.compileStreaming(cv::compile_args(kernels, networks,
cv::gapi::streaming::queue_capacity{1}));
std::shared_ptr<cv::gapi::wip::GCaptureSource> source;
if (isNumber(input)) {
source = std::make_shared<cv::gapi::wip::GCaptureSource>(
std::stoi(input),
std::map<int, double> {
{cv::CAP_PROP_FRAME_WIDTH, 1280},
{cv::CAP_PROP_FRAME_HEIGHT, 720},
{cv::CAP_PROP_BUFFERSIZE, 1},
{cv::CAP_PROP_AUTOFOCUS, true}
}
);
} else {
source = std::make_shared<cv::gapi::wip::GCaptureSource>(input);
}
auto inputs = cv::gin(
static_cast<cv::gapi::wip::IStreamSource::Ptr>(source));
// The execution part
pipeline.setSource(std::move(inputs));
cv::TickMeter tm;
cv::VideoWriter writer;
cv::util::optional<cv::Mat> color_mask;
cv::util::optional<cv::Mat> image;
cv::Mat last_image;
cv::Mat last_color_mask;
pipeline.start();
tm.start();
std::size_t frames = 0u;
std::size_t masks = 0u;
while (pipeline.pull(cv::gout(image, color_mask))) {
if (image.has_value()) {
++frames;
last_image = std::move(*image);
}
if (color_mask.has_value()) {
++masks;
last_color_mask = std::move(*color_mask);
}
if (!last_image.empty() && !last_color_mask.empty()) {
tm.stop();
std::string stream_fps = "Stream FPS: " + toStr(frames / tm.getTimeSec());
std::string inference_fps = "Inference FPS: " + toStr(masks / tm.getTimeSec());
cv::Mat tmp = last_image.clone();
vis::drawResults(tmp, last_color_mask);
vis::putText(tmp, {10, 22}, stream_fps);
vis::putText(tmp, {10, 22 + 30}, inference_fps);
cv::imshow("Out", tmp);
cv::waitKey(1);
if (!output.empty()) {
if (!writer.isOpened()) {
const auto sz = cv::Size{tmp.cols, tmp.rows};
writer.open(output, cv::VideoWriter::fourcc('M','J','P','G'), 25.0, sz);
CV_Assert(writer.isOpened());
}
writer << tmp;
}
tm.start();
}
}
tm.stop();
std::cout << "Processed " << frames << " frames" << " ("
<< frames / tm.getTimeSec()<< " FPS)" << std::endl;
return 0;
}
|