1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
|
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2020 Intel Corporation
// Deliberately include .cpp file instead of header as we use non exported function (execute)
#include <executor/gtbbexecutor.cpp>
#ifdef HAVE_TBB
#include <tbb/tbb.h>
#include <tbb/task.h>
#if TBB_INTERFACE_VERSION < 12000
#include <tbb/task_arena.h>
#include "../test_precomp.hpp"
#include <thread>
namespace {
tbb::task_arena create_task_arena(int max_concurrency = tbb::task_arena::automatic /* set to 1 for single thread */) {
unsigned int reserved_for_master_threads = 1;
if (max_concurrency == 1) {
// Leave no room for TBB worker threads, by reserving all to masters.
// TBB runtime guarantees that no worker threads will join the arena
// if max_concurrency is equal to reserved_for_master_threads
// except 1:1 + use of enqueued tasks for safety guarantee.
// So deliberately make it 2:2 to force TBB not to create extra thread.
//
// N.B. one slot will left empty as only one master thread(one that
// calls root->wait_for_all()) will join the arena.
// FIXME: strictly speaking master can take any free slot, not the first one.
// However at the moment master seems to pick 0 slot all the time.
max_concurrency = 2;
reserved_for_master_threads = 2;
}
return tbb::task_arena{max_concurrency, reserved_for_master_threads};
}
}
namespace opencv_test {
TEST(TBBExecutor, Basic) {
using namespace cv::gimpl::parallel;
bool executed = false;
prio_items_queue_t q;
tile_node n([&]() {
executed = true;
});
q.push(&n);
execute(q);
EXPECT_TRUE(executed);
}
TEST(TBBExecutor, SerialExecution) {
using namespace cv::gimpl::parallel;
const int n = 10;
prio_items_queue_t q;
std::vector<tile_node> nodes; nodes.reserve(n+1);
std::vector<std::thread::id> thread_id(n);
for (int i=0; i <n; i++) {
nodes.push_back(tile_node([&, i]() {
thread_id[i] = std::this_thread::get_id();
std::this_thread::sleep_for(std::chrono::milliseconds(10));
}));
q.push(&nodes.back());
}
auto serial_arena = create_task_arena(1);
execute(q, serial_arena);
auto print_thread_ids = [&] {
std::stringstream str;
for (auto& i : thread_id) { str << i <<" ";}
return str.str();
};
EXPECT_NE(thread_id[0], std::thread::id{}) << print_thread_ids();
EXPECT_EQ(thread_id.size(), static_cast<size_t>(std::count(thread_id.begin(), thread_id.end(), thread_id[0])))
<< print_thread_ids();
}
TEST(TBBExecutor, AsyncBasic) {
using namespace cv::gimpl::parallel;
std::atomic<bool> callback_ready {false};
std::function<void()> callback;
std::atomic<bool> callback_called {false};
std::atomic<bool> master_is_waiting {true};
std::atomic<bool> master_was_blocked_until_callback_called {false};
auto async_thread = std::thread([&] {
bool slept = false;
while (!callback_ready) {
std::this_thread::sleep_for(std::chrono::milliseconds(1));
slept = true;
}
if (!slept) {
std::this_thread::sleep_for(std::chrono::milliseconds(1));
}
callback_called = true;
master_was_blocked_until_callback_called = (master_is_waiting == true);
callback();
});
auto async_task_body = [&](std::function<void()>&& cb, size_t /*total_order_index*/) {
callback = std::move(cb);
callback_ready = true;
};
tile_node n(async, std::move(async_task_body));
prio_items_queue_t q;
q.push(&n);
execute(q);
master_is_waiting = false;
async_thread.join();
EXPECT_TRUE(callback_called);
EXPECT_TRUE(master_was_blocked_until_callback_called);
}
TEST(TBBExecutor, Dependencies) {
using namespace cv::gimpl::parallel;
const int n = 10;
bool serial = true;
std::atomic<int> counter {0};
prio_items_queue_t q;
std::vector<tile_node> nodes; nodes.reserve(n+1);
const int invalid_order = -10;
std::vector<int> tiles_exec_order(n, invalid_order);
auto add_dependency_to = [](tile_node& node, tile_node& dependency) {
dependency.dependants.push_back(&node);
node.dependencies++;
node.dependency_count.fetch_add(1);
};
for (int i=0; i <n; i++) {
nodes.push_back(tile_node([&, i]() {
tiles_exec_order[i] = counter++;
if (!serial) {
//sleep gives a better chance for other threads to take part in the execution
std::this_thread::sleep_for(std::chrono::milliseconds(10));
}
}));
if (i >0) {
auto last_node = nodes.end() - 1;
add_dependency_to(*last_node, *(last_node -1));
}
}
q.push(&nodes.front());
auto arena = serial ? create_task_arena(1) : create_task_arena();
execute(q, arena);
auto print_execution_order = [&] {
std::stringstream str;
for (auto& i : tiles_exec_order) { str << i <<" ";}
return str.str();
};
ASSERT_EQ(0, std::count(tiles_exec_order.begin(), tiles_exec_order.end(), invalid_order))
<< "Not all " << n << " task executed ?\n"
<<" execution order : " << print_execution_order();
for (size_t i=0; i <nodes.size(); i++) {
auto node_exec_order = tiles_exec_order[i];
for (auto* dependee : nodes[i].dependants) {
auto index = std::distance(&nodes.front(), dependee);
auto dependee_execution_order = tiles_exec_order[index];
ASSERT_LT(node_exec_order, dependee_execution_order) << "node number " << index << " is executed earlier than it's dependency " << i;
}
}
}
} // namespace opencv_test
#endif //TBB_INTERFACE_VERSION
#endif //HAVE_TBB
|