1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
|
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2020 Intel Corporation
#include "../test_precomp.hpp"
#ifdef HAVE_ONNX
#include <stdexcept>
#include <codecvt> // wstring_convert
#include <onnxruntime_cxx_api.h>
#include <ade/util/iota_range.hpp>
#include <ade/util/algorithm.hpp>
#include <opencv2/gapi/own/convert.hpp>
#include <opencv2/gapi/infer/onnx.hpp>
namespace {
class TestMediaBGR final: public cv::MediaFrame::IAdapter {
cv::Mat m_mat;
using Cb = cv::MediaFrame::View::Callback;
Cb m_cb;
public:
explicit TestMediaBGR(cv::Mat m, Cb cb = [](){})
: m_mat(m), m_cb(cb) {
}
cv::GFrameDesc meta() const override {
return cv::GFrameDesc{cv::MediaFormat::BGR, cv::Size(m_mat.cols, m_mat.rows)};
}
cv::MediaFrame::View access(cv::MediaFrame::Access) override {
cv::MediaFrame::View::Ptrs pp = { m_mat.ptr(), nullptr, nullptr, nullptr };
cv::MediaFrame::View::Strides ss = { m_mat.step, 0u, 0u, 0u };
return cv::MediaFrame::View(std::move(pp), std::move(ss), Cb{m_cb});
}
};
class TestMediaNV12 final: public cv::MediaFrame::IAdapter {
cv::Mat m_y;
cv::Mat m_uv;
public:
TestMediaNV12(cv::Mat y, cv::Mat uv) : m_y(y), m_uv(uv) {
}
cv::GFrameDesc meta() const override {
return cv::GFrameDesc{cv::MediaFormat::NV12, cv::Size(m_y.cols, m_y.rows)};
}
cv::MediaFrame::View access(cv::MediaFrame::Access) override {
cv::MediaFrame::View::Ptrs pp = {
m_y.ptr(), m_uv.ptr(), nullptr, nullptr
};
cv::MediaFrame::View::Strides ss = {
m_y.step, m_uv.step, 0u, 0u
};
return cv::MediaFrame::View(std::move(pp), std::move(ss));
}
};
struct ONNXInitPath {
ONNXInitPath() {
const char* env_path = getenv("OPENCV_GAPI_ONNX_MODEL_PATH");
if (env_path) {
cvtest::addDataSearchPath(env_path);
}
}
};
static ONNXInitPath g_init_path;
cv::Mat initMatrixRandU(const int type, const cv::Size& sz_in) {
const cv::Mat in_mat = cv::Mat(sz_in, type);
if (CV_MAT_DEPTH(type) < CV_32F) {
cv::randu(in_mat, cv::Scalar::all(0), cv::Scalar::all(255));
} else {
const int fscale = 256; // avoid bits near ULP, generate stable test input
cv::Mat in_mat32s(in_mat.size(), CV_MAKE_TYPE(CV_32S, CV_MAT_CN(type)));
cv::randu(in_mat32s, cv::Scalar::all(0), cv::Scalar::all(255 * fscale));
in_mat32s.convertTo(in_mat, type, 1.0f / fscale, 0);
}
return in_mat;
}
} // anonymous namespace
namespace opencv_test
{
namespace {
// FIXME: taken from the DNN module
void normAssert(cv::InputArray& ref, cv::InputArray& test,
const char *comment /*= ""*/,
const double l1 = 0.00001, const double lInf = 0.0001) {
const double normL1 = cvtest::norm(ref, test, cv::NORM_L1) / ref.getMat().total();
EXPECT_LE(normL1, l1) << comment;
const double normInf = cvtest::norm(ref, test, cv::NORM_INF);
EXPECT_LE(normInf, lInf) << comment;
}
inline std::string findModel(const std::string &model_name) {
return findDataFile("vision/" + model_name + ".onnx", false);
}
inline void toCHW(const cv::Mat& src, cv::Mat& dst) {
dst.create(cv::Size(src.cols, src.rows * src.channels()), CV_32F);
std::vector<cv::Mat> planes;
for (int i = 0; i < src.channels(); ++i) {
planes.push_back(dst.rowRange(i * src.rows, (i + 1) * src.rows));
}
cv::split(src, planes);
}
inline int toCV(ONNXTensorElementDataType prec) {
switch (prec) {
case ONNX_TENSOR_ELEMENT_DATA_TYPE_UINT8: return CV_8U;
case ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT: return CV_32F;
case ONNX_TENSOR_ELEMENT_DATA_TYPE_INT32: return CV_32S;
case ONNX_TENSOR_ELEMENT_DATA_TYPE_INT64: return CV_32S;
default: GAPI_Error("Unsupported data type");
}
return -1;
}
void copyFromONNX(Ort::Value &v, cv::Mat& mat) {
const auto info = v.GetTensorTypeAndShapeInfo();
const auto prec = info.GetElementType();
const auto shape = info.GetShape();
const std::vector<int> dims(shape.begin(), shape.end());
mat.create(dims, toCV(prec));
switch (prec) {
#define HANDLE(E,T) \
case E: std::copy_n(v.GetTensorMutableData<T>(), \
mat.total(), \
reinterpret_cast<T*>(mat.data)); \
break;
HANDLE(ONNX_TENSOR_ELEMENT_DATA_TYPE_UINT8, uint8_t);
HANDLE(ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT, float);
HANDLE(ONNX_TENSOR_ELEMENT_DATA_TYPE_INT32, int);
#undef HANDLE
case ONNX_TENSOR_ELEMENT_DATA_TYPE_INT64: {
const auto o_ptr = v.GetTensorMutableData<int64_t>();
const auto g_ptr = reinterpret_cast<int*>(mat.data);
std::transform(o_ptr, o_ptr + mat.total(), g_ptr,
[](int64_t el) { return static_cast<int>(el); });
break;
}
default: GAPI_Error("ONNX. Unsupported data type");
}
}
inline std::vector<int64_t> toORT(const cv::MatSize &sz) {
return cv::to_own<int64_t>(sz);
}
inline std::vector<const char*> getCharNames(const std::vector<std::string>& names) {
std::vector<const char*> out_ptrs;
out_ptrs.reserve(names.size());
ade::util::transform(names, std::back_inserter(out_ptrs),
[](const std::string& name) { return name.c_str(); });
return out_ptrs;
}
template<typename T>
void copyToOut(const cv::Mat& onnx_out, const T end_mark, cv::Mat& gapi_out) {
// This function is part of some remap__ function.
// You can set graph output size (gapi_out) larger than real out from ONNX
// so you have to add something for separate correct data and garbage.
// For example, end of data can be marked with -1 (for positive values)
// or you can put size of correct data at first/last element of output matrix.
const size_t size = std::min(onnx_out.total(), gapi_out.total());
std::copy(onnx_out.begin<T>(),
onnx_out.begin<T>() + size,
gapi_out.begin<T>());
if (gapi_out.total() > onnx_out.total()) {
T* gptr = gapi_out.ptr<T>();
gptr[size] = end_mark;
}
}
void remapYolo(const std::unordered_map<std::string, cv::Mat> &onnx,
std::unordered_map<std::string, cv::Mat> &gapi) {
GAPI_Assert(onnx.size() == 1u);
GAPI_Assert(gapi.size() == 1u);
// Result from Run method
const cv::Mat& in = onnx.begin()->second;
GAPI_Assert(in.depth() == CV_32F);
// Configured output
cv::Mat& out = gapi.begin()->second;
// Simple copy
copyToOut<float>(in, -1.f, out);
}
void remapYoloV3(const std::unordered_map<std::string, cv::Mat> &onnx,
std::unordered_map<std::string, cv::Mat> &gapi) {
// Simple copy for outputs
const cv::Mat& in_boxes = onnx.at("yolonms_layer_1/ExpandDims_1:0");
const cv::Mat& in_scores = onnx.at("yolonms_layer_1/ExpandDims_3:0");
const cv::Mat& in_indices = onnx.at("yolonms_layer_1/concat_2:0");
GAPI_Assert(in_boxes.depth() == CV_32F);
GAPI_Assert(in_scores.depth() == CV_32F);
GAPI_Assert(in_indices.depth() == CV_32S);
cv::Mat& out_boxes = gapi.at("out1");
cv::Mat& out_scores = gapi.at("out2");
cv::Mat& out_indices = gapi.at("out3");
copyToOut<float>(in_boxes, -1.f, out_boxes);
copyToOut<float>(in_scores, -1.f, out_scores);
copyToOut<int>(in_indices, -1, out_indices);
}
void remapToIESSDOut(const std::vector<cv::Mat> &detections,
cv::Mat &ssd_output) {
GAPI_Assert(detections.size() == 4u);
for (const auto &det_el : detections) {
GAPI_Assert(det_el.depth() == CV_32F);
GAPI_Assert(!det_el.empty());
}
// SSD-MobilenetV1 structure check
ASSERT_EQ(1u, detections[0].total());
ASSERT_EQ(detections[2].total(), detections[0].total() * 100);
ASSERT_EQ(detections[2].total(), detections[3].total());
ASSERT_EQ((detections[2].total() * 4), detections[1].total());
const int num_objects = static_cast<int>(detections[0].ptr<float>()[0]);
GAPI_Assert(num_objects <= (ssd_output.size[2] - 1));
const float *in_boxes = detections[1].ptr<float>();
const float *in_scores = detections[2].ptr<float>();
const float *in_classes = detections[3].ptr<float>();
float *ptr = ssd_output.ptr<float>();
for (int i = 0; i < num_objects; ++i) {
ptr[0] = 0.f; // "image_id"
ptr[1] = in_classes[i]; // "label"
ptr[2] = in_scores[i]; // "confidence"
ptr[3] = in_boxes[4 * i + 1]; // left
ptr[4] = in_boxes[4 * i + 0]; // top
ptr[5] = in_boxes[4 * i + 3]; // right
ptr[6] = in_boxes[4 * i + 2]; // bottom
ptr += 7;
in_boxes += 4;
}
if (num_objects < ssd_output.size[2] - 1) {
// put a -1 mark at the end of output blob if there is space left
ptr[0] = -1.f;
}
}
void remapSSDPorts(const std::unordered_map<std::string, cv::Mat> &onnx,
std::unordered_map<std::string, cv::Mat> &gapi) {
// Assemble ONNX-processed outputs back to a single 1x1x200x7 blob
// to preserve compatibility with OpenVINO-based SSD pipeline
const cv::Mat &num_detections = onnx.at("num_detections:0");
const cv::Mat &detection_boxes = onnx.at("detection_boxes:0");
const cv::Mat &detection_scores = onnx.at("detection_scores:0");
const cv::Mat &detection_classes = onnx.at("detection_classes:0");
cv::Mat &ssd_output = gapi.at("detection_output");
remapToIESSDOut({num_detections, detection_boxes, detection_scores, detection_classes}, ssd_output);
}
void reallocSSDPort(const std::unordered_map<std::string, cv::Mat> &/*onnx*/,
std::unordered_map<std::string, cv::Mat> &gapi) {
gapi["detection_boxes"].create(1000, 3000, CV_32FC3);
}
void remapRCNNPortsC(const std::unordered_map<std::string, cv::Mat> &onnx,
std::unordered_map<std::string, cv::Mat> &gapi) {
// Simple copy for outputs
const cv::Mat& in_boxes = onnx.at("6379");
const cv::Mat& in_labels = onnx.at("6381");
const cv::Mat& in_scores = onnx.at("6383");
GAPI_Assert(in_boxes.depth() == CV_32F);
GAPI_Assert(in_labels.depth() == CV_32S);
GAPI_Assert(in_scores.depth() == CV_32F);
cv::Mat& out_boxes = gapi.at("out1");
cv::Mat& out_labels = gapi.at("out2");
cv::Mat& out_scores = gapi.at("out3");
copyToOut<float>(in_boxes, -1.f, out_boxes);
copyToOut<int>(in_labels, -1, out_labels);
copyToOut<float>(in_scores, -1.f, out_scores);
}
void remapRCNNPortsDO(const std::unordered_map<std::string, cv::Mat> &onnx,
std::unordered_map<std::string, cv::Mat> &gapi) {
// Simple copy for outputs
const cv::Mat& in_boxes = onnx.at("6379");
const cv::Mat& in_scores = onnx.at("6383");
GAPI_Assert(in_boxes.depth() == CV_32F);
GAPI_Assert(in_scores.depth() == CV_32F);
cv::Mat& out_boxes = gapi.at("out1");
cv::Mat& out_scores = gapi.at("out2");
copyToOut<float>(in_boxes, -1.f, out_boxes);
copyToOut<float>(in_scores, -1.f, out_scores);
}
class ONNXtest : public ::testing::Test {
public:
std::string model_path;
size_t num_in, num_out;
std::vector<cv::Mat> out_gapi;
std::vector<cv::Mat> out_onnx;
cv::Mat in_mat;
ONNXtest() {
env = Ort::Env(ORT_LOGGING_LEVEL_WARNING, "test");
memory_info = Ort::MemoryInfo::CreateCpu(OrtArenaAllocator, OrtMemTypeDefault);
out_gapi.resize(1);
}
template<typename T>
void infer(const std::vector<cv::Mat>& ins,
std::vector<cv::Mat>& outs,
std::vector<std::string>&& custom_out_names = {}) {
// Prepare session
#ifndef _WIN32
session = Ort::Session(env, model_path.c_str(), session_options);
#else
std::wstring_convert<std::codecvt_utf8<wchar_t>, wchar_t> converter;
std::wstring w_model_path = converter.from_bytes(model_path.c_str());
session = Ort::Session(env, w_model_path.c_str(), session_options);
#endif
num_in = session.GetInputCount();
num_out = session.GetOutputCount();
GAPI_Assert(num_in == ins.size());
in_node_names.clear();
out_node_names.clear();
// Inputs Run params
std::vector<Ort::Value> in_tensors;
for(size_t i = 0; i < num_in; ++i) {
auto in_node_name_p = session.GetInputNameAllocated(i, allocator);
in_node_names.emplace_back(in_node_name_p.get());
in_node_dims = toORT(ins[i].size);
in_tensors.emplace_back(Ort::Value::CreateTensor<T>(memory_info,
const_cast<T*>(ins[i].ptr<T>()),
ins[i].total(),
in_node_dims.data(),
in_node_dims.size()));
}
// Outputs Run params
if (custom_out_names.empty()) {
for(size_t i = 0; i < num_out; ++i) {
auto out_node_name_p = session.GetOutputNameAllocated(i, allocator);
out_node_names.emplace_back(out_node_name_p.get());
}
} else {
out_node_names = std::move(custom_out_names);
}
// Input/output order by names
const auto in_run_names = getCharNames(in_node_names);
const auto out_run_names = getCharNames(out_node_names);
num_out = out_run_names.size();
// Run
auto result = session.Run(Ort::RunOptions{nullptr},
in_run_names.data(),
&in_tensors.front(),
num_in,
out_run_names.data(),
num_out);
// Copy outputs
GAPI_Assert(result.size() == num_out);
for (size_t i = 0; i < num_out; ++i) {
const auto info = result[i].GetTensorTypeAndShapeInfo();
const auto shape = info.GetShape();
const auto type = toCV(info.GetElementType());
const std::vector<int> dims(shape.begin(), shape.end());
outs.emplace_back(dims, type);
copyFromONNX(result[i], outs.back());
}
}
// One input/output overload
template<typename T>
void infer(const cv::Mat& in, cv::Mat& out) {
std::vector<cv::Mat> result;
infer<T>(std::vector<cv::Mat>{in}, result);
GAPI_Assert(result.size() == 1u);
out = result.front();
}
// One input overload
template<typename T>
void infer(const cv::Mat& in,
std::vector<cv::Mat>& outs,
std::vector<std::string>&& custom_out_names = {}) {
infer<T>(std::vector<cv::Mat>{in}, outs, std::move(custom_out_names));
}
void validate() {
GAPI_Assert(!out_gapi.empty() && !out_onnx.empty());
ASSERT_EQ(out_gapi.size(), out_onnx.size());
const auto size = out_gapi.size();
for (size_t i = 0; i < size; ++i) {
normAssert(out_onnx[i], out_gapi[i], "Test outputs");
}
}
void useModel(const std::string& model_name) {
model_path = findModel(model_name);
}
private:
Ort::Env env{nullptr};
Ort::MemoryInfo memory_info{nullptr};
Ort::AllocatorWithDefaultOptions allocator;
Ort::SessionOptions session_options;
Ort::Session session{nullptr};
std::vector<int64_t> in_node_dims;
std::vector<std::string> in_node_names;
std::vector<std::string> out_node_names;
};
class ONNXClassification : public ONNXtest {
public:
const cv::Scalar mean = { 0.485, 0.456, 0.406 };
const cv::Scalar std = { 0.229, 0.224, 0.225 };
// Rois for InferList, InferList2
const std::vector<cv::Rect> rois = {
cv::Rect(cv::Point{ 0, 0}, cv::Size{80, 120}),
cv::Rect(cv::Point{50, 100}, cv::Size{250, 360})
};
// FIXME(dm): There's too much "preprocess" routines in this file
// Only one must stay but better design it wisely (and later)
void preprocess(const cv::Mat& src, cv::Mat& dst, bool norm = true) {
const int new_h = 224;
const int new_w = 224;
cv::Mat tmp, cvt, rsz;
cv::resize(src, rsz, cv::Size(new_w, new_h));
rsz.convertTo(cvt, CV_32F, norm ? 1.f / 255 : 1.f);
tmp = norm
? (cvt - mean) / std
: cvt;
toCHW(tmp, dst);
dst = dst.reshape(1, {1, 3, new_h, new_w});
}
};
class ONNXMediaFrame : public ONNXClassification {
public:
const std::vector<cv::Rect> rois = {
cv::Rect(cv::Point{ 0, 0}, cv::Size{80, 120}),
cv::Rect(cv::Point{50, 100}, cv::Size{250, 360}),
cv::Rect(cv::Point{70, 10}, cv::Size{20, 260}),
cv::Rect(cv::Point{5, 15}, cv::Size{200, 160}),
};
const cv::Size sz{640, 480};
const cv::Mat m_in_y = initMatrixRandU(CV_8UC1, sz);
const cv::Mat m_in_uv = initMatrixRandU(CV_8UC2, sz / 2);
};
class ONNXGRayScale : public ONNXtest {
public:
void preprocess(const cv::Mat& src, cv::Mat& dst) {
const int new_h = 64;
const int new_w = 64;
cv::Mat cvc, rsz, cvt;
cv::cvtColor(src, cvc, cv::COLOR_BGR2GRAY);
cv::resize(cvc, rsz, cv::Size(new_w, new_h));
rsz.convertTo(cvt, CV_32F);
toCHW(cvt, dst);
dst = dst.reshape(1, {1, 1, new_h, new_w});
}
};
class ONNXWithRemap : public ONNXtest {
private:
size_t step_by_outs = 0;
public:
// This function checks each next cv::Mat in out_gapi vector for next call.
// end_mark is edge of correct data
template <typename T>
void validate(const T end_mark) {
GAPI_Assert(!out_gapi.empty() && !out_onnx.empty());
ASSERT_EQ(out_gapi.size(), out_onnx.size());
GAPI_Assert(step_by_outs < out_gapi.size());
const T* op = out_onnx.at(step_by_outs).ptr<T>();
const T* gp = out_gapi.at(step_by_outs).ptr<T>();
// Checking that graph output larger than onnx output
const auto out_size = std::min(out_onnx.at(step_by_outs).total(), out_gapi.at(step_by_outs).total());
GAPI_Assert(out_size != 0u);
for (size_t d_idx = 0; d_idx < out_size; ++d_idx) {
if (gp[d_idx] == end_mark) break;
ASSERT_EQ(op[d_idx], gp[d_idx]);
}
++step_by_outs;
}
};
class ONNXRCNN : public ONNXWithRemap {
private:
const cv::Scalar rcnn_mean = { 102.9801, 115.9465, 122.7717 };
const float range_max = 1333;
const float range_min = 800;
public:
void preprocess(const cv::Mat& src, cv::Mat& dst) {
cv::Mat rsz, cvt, chw, mn;
const auto get_ratio = [&](const int dim) -> float {
return ((dim > range_max) || (dim < range_min))
? dim > range_max
? range_max / dim
: range_min / dim
: 1.f;
};
const auto ratio_h = get_ratio(src.rows);
const auto ratio_w = get_ratio(src.cols);
const auto new_h = static_cast<int>(ratio_h * src.rows);
const auto new_w = static_cast<int>(ratio_w * src.cols);
cv::resize(src, rsz, cv::Size(new_w, new_h));
rsz.convertTo(cvt, CV_32F, 1.f);
toCHW(cvt, chw);
mn = chw - rcnn_mean;
const int padded_h = std::ceil(new_h / 32.f) * 32;
const int padded_w = std::ceil(new_w / 32.f) * 32;
cv::Mat pad_im(cv::Size(padded_w, 3 * padded_h), CV_32F, 0.f);
pad_im(cv::Rect(0, 0, mn.cols, mn.rows)) += mn;
dst = pad_im.reshape(1, {3, padded_h, padded_w});
}
};
class ONNXYoloV3 : public ONNXWithRemap {
public:
std::vector<cv::Mat> ins;
void constructYoloInputs(const cv::Mat& src) {
const int yolo_in_h = 416;
const int yolo_in_w = 416;
cv::Mat yolov3_input, shape, prep_mat;
cv::resize(src, yolov3_input, cv::Size(yolo_in_w, yolo_in_h));
shape.create(cv::Size(2, 1), CV_32F);
float* ptr = shape.ptr<float>();
ptr[0] = src.cols;
ptr[1] = src.rows;
preprocess(yolov3_input, prep_mat);
ins = {prep_mat, shape};
}
private:
void preprocess(const cv::Mat& src, cv::Mat& dst) {
cv::Mat cvt;
src.convertTo(cvt, CV_32F, 1.f / 255.f);
toCHW(cvt, dst);
dst = dst.reshape(1, {1, 3, 416, 416});
}
};
} // anonymous namespace
TEST_F(ONNXClassification, Infer)
{
useModel("classification/squeezenet/model/squeezenet1.0-9");
in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false));
// ONNX_API code
cv::Mat processed_mat;
preprocess(in_mat, processed_mat, false); // NO normalization for 1.0-9, see #23597
infer<float>(processed_mat, out_onnx);
// G_API code
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
cv::GMat in;
cv::GMat out = cv::gapi::infer<SqueezNet>(in);
cv::GComputation comp(cv::GIn(in), cv::GOut(out));
auto net = cv::gapi::onnx::Params<SqueezNet> {
model_path
}.cfgNormalize({false});
comp.apply(cv::gin(in_mat),
cv::gout(out_gapi.front()),
cv::compile_args(cv::gapi::networks(net)));
// Validate
validate();
}
TEST_F(ONNXClassification, InferTensor)
{
useModel("classification/squeezenet/model/squeezenet1.0-9");
in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false));
// Create tensor
cv::Mat tensor;
preprocess(in_mat, tensor, false); // NO normalization for 1.0-9, see #23597
// ONNX_API code
infer<float>(tensor, out_onnx);
// G_API code
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
cv::GMat in;
cv::GMat out = cv::gapi::infer<SqueezNet>(in);
cv::GComputation comp(cv::GIn(in), cv::GOut(out));
auto net = cv::gapi::onnx::Params<SqueezNet> {
model_path
}.cfgNormalize({false});
comp.apply(cv::gin(tensor),
cv::gout(out_gapi.front()),
cv::compile_args(cv::gapi::networks(net)));
// Validate
validate();
}
TEST_F(ONNXClassification, InferROI)
{
useModel("classification/squeezenet/model/squeezenet1.0-9");
in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false));
const auto ROI = rois.at(0);
// ONNX_API code
cv::Mat roi_mat;
preprocess(in_mat(ROI), roi_mat, false); // NO normalization for 1.0-9, see #23597
infer<float>(roi_mat, out_onnx);
// G_API code
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
cv::GMat in;
cv::GOpaque<cv::Rect> rect;
cv::GMat out = cv::gapi::infer<SqueezNet>(rect, in);
cv::GComputation comp(cv::GIn(in, rect), cv::GOut(out));
auto net = cv::gapi::onnx::Params<SqueezNet> {
model_path
}.cfgNormalize({false});
comp.apply(cv::gin(in_mat, ROI),
cv::gout(out_gapi.front()),
cv::compile_args(cv::gapi::networks(net)));
// Validate
validate();
}
TEST_F(ONNXClassification, InferROIList)
{
useModel("classification/squeezenet/model/squeezenet1.0-9");
in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false));
// ONNX_API code
for (size_t i = 0; i < rois.size(); ++i) {
cv::Mat roi_mat;
preprocess(in_mat(rois[i]), roi_mat, false); // NO normalization for 1.0-9, see #23597
infer<float>(roi_mat, out_onnx);
}
// G_API code
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
cv::GMat in;
cv::GArray<cv::Rect> rr;
cv::GArray<cv::GMat> out = cv::gapi::infer<SqueezNet>(rr, in);
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(out));
// NOTE: We have to normalize U8 tensor
// so cfgMeanStd() is here
auto net = cv::gapi::onnx::Params<SqueezNet> {
model_path
}.cfgNormalize({false});
comp.apply(cv::gin(in_mat, rois),
cv::gout(out_gapi),
cv::compile_args(cv::gapi::networks(net)));
// Validate
validate();
}
TEST_F(ONNXClassification, Infer2ROIList)
{
useModel("classification/squeezenet/model/squeezenet1.0-9");
in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false));
// ONNX_API code
for (size_t i = 0; i < rois.size(); ++i) {
cv::Mat roi_mat;
preprocess(in_mat(rois[i]), roi_mat, false); // NO normalization for 1.0-9, see #23597
infer<float>(roi_mat, out_onnx);
}
// G_API code
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
cv::GMat in;
cv::GArray<cv::Rect> rr;
cv::GArray<cv::GMat> out = cv::gapi::infer2<SqueezNet>(in, rr);
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(out));
// NOTE: We have to normalize U8 tensor
// so cfgMeanStd() is here
auto net = cv::gapi::onnx::Params<SqueezNet> {
model_path
}.cfgNormalize({false});
comp.apply(cv::gin(in_mat, rois),
cv::gout(out_gapi),
cv::compile_args(cv::gapi::networks(net)));
// Validate
validate();
}
TEST_F(ONNXWithRemap, InferDynamicInputTensor)
{
useModel("object_detection_segmentation/tiny-yolov2/model/tinyyolov2-8");
in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false));
// Create tensor
cv::Mat cvt, rsz, tensor;
cv::resize(in_mat, rsz, cv::Size{416, 416});
rsz.convertTo(cvt, CV_32F, 1.f / 255.f);
toCHW(cvt, tensor);
tensor = tensor.reshape(1, {1, 3, 416, 416});
// ONNX_API code
infer<float>(tensor, out_onnx);
// G_API code
G_API_NET(YoloNet, <cv::GMat(cv::GMat)>, "YoloNet");
cv::GMat in;
cv::GMat out = cv::gapi::infer<YoloNet>(in);
cv::GComputation comp(cv::GIn(in), cv::GOut(out));
auto net = cv::gapi::onnx::Params<YoloNet>{ model_path }
.cfgPostProc({cv::GMatDesc{CV_32F, {1, 125, 13, 13}}}, remapYolo)
.cfgOutputLayers({"out"});
comp.apply(cv::gin(tensor),
cv::gout(out_gapi.front()),
cv::compile_args(cv::gapi::networks(net)));
// Validate
validate<float>(-1.f);
}
TEST_F(ONNXGRayScale, InferImage)
{
useModel("body_analysis/emotion_ferplus/model/emotion-ferplus-8");
in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false));
// ONNX_API code
cv::Mat prep_mat;
preprocess(in_mat, prep_mat);
infer<float>(prep_mat, out_onnx);
// G_API code
G_API_NET(EmotionNet, <cv::GMat(cv::GMat)>, "emotion-ferplus");
cv::GMat in;
cv::GMat out = cv::gapi::infer<EmotionNet>(in);
cv::GComputation comp(cv::GIn(in), cv::GOut(out));
auto net = cv::gapi::onnx::Params<EmotionNet> { model_path }
.cfgNormalize({ false }); // model accepts 0..255 range in FP32;
comp.apply(cv::gin(in_mat),
cv::gout(out_gapi.front()),
cv::compile_args(cv::gapi::networks(net)));
// Validate
validate();
}
TEST_F(ONNXWithRemap, InferMultiOutput)
{
useModel("object_detection_segmentation/ssd-mobilenetv1/model/ssd_mobilenet_v1_10");
in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false));
// ONNX_API code
const auto prep_mat = in_mat.reshape(1, {1, in_mat.rows, in_mat.cols, in_mat.channels()});
infer<uint8_t>(prep_mat, out_onnx);
cv::Mat onnx_conv_out({1, 1, 200, 7}, CV_32F);
remapToIESSDOut({out_onnx[3], out_onnx[0], out_onnx[2], out_onnx[1]}, onnx_conv_out);
out_onnx.clear();
out_onnx.push_back(onnx_conv_out);
// G_API code
G_API_NET(MobileNet, <cv::GMat(cv::GMat)>, "ssd_mobilenet");
cv::GMat in;
cv::GMat out = cv::gapi::infer<MobileNet>(in);
cv::GComputation comp(cv::GIn(in), cv::GOut(out));
auto net = cv::gapi::onnx::Params<MobileNet>{ model_path }
.cfgOutputLayers({"detection_output"})
.cfgPostProc({cv::GMatDesc{CV_32F, {1, 1, 200, 7}}}, remapSSDPorts);
comp.apply(cv::gin(in_mat),
cv::gout(out_gapi.front()),
cv::compile_args(cv::gapi::networks(net)));
// Validate
validate<float>(-1.f);
}
TEST_F(ONNXMediaFrame, InferBGR)
{
useModel("classification/squeezenet/model/squeezenet1.0-9");
in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false));
// ONNX_API code
cv::Mat processed_mat;
preprocess(in_mat, processed_mat, false); // NO normalization for 1.0-9, see #23597
infer<float>(processed_mat, out_onnx);
// G_API code
auto frame = MediaFrame::Create<TestMediaBGR>(in_mat);
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
cv::GFrame in;
cv::GMat out = cv::gapi::infer<SqueezNet>(in);
cv::GComputation comp(cv::GIn(in), cv::GOut(out));
// NOTE: We have to normalize U8 tensor
// so cfgMeanStd() is here
auto net = cv::gapi::onnx::Params<SqueezNet> {
model_path
}.cfgNormalize({false});
comp.apply(cv::gin(frame),
cv::gout(out_gapi.front()),
cv::compile_args(cv::gapi::networks(net)));
// Validate
validate();
}
TEST_F(ONNXMediaFrame, InferYUV)
{
useModel("classification/squeezenet/model/squeezenet1.0-9");
in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false));
const auto frame = MediaFrame::Create<TestMediaNV12>(m_in_y, m_in_uv);
// ONNX_API code
cv::Mat pp;
cvtColorTwoPlane(m_in_y, m_in_uv, pp, cv::COLOR_YUV2BGR_NV12);
cv::Mat processed_mat;
preprocess(pp, processed_mat, false); // NO normalization for 1.0-9, see #23597
infer<float>(processed_mat, out_onnx);
// G_API code
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
cv::GFrame in;
cv::GMat out = cv::gapi::infer<SqueezNet>(in);
cv::GComputation comp(cv::GIn(in), cv::GOut(out));
// NOTE: We have to normalize U8 tensor
// so cfgMeanStd() is here
auto net = cv::gapi::onnx::Params<SqueezNet> {
model_path
}.cfgNormalize({false});
comp.apply(cv::gin(frame),
cv::gout(out_gapi.front()),
cv::compile_args(cv::gapi::networks(net)));
// Validate
validate();
}
TEST_F(ONNXMediaFrame, InferROIBGR)
{
useModel("classification/squeezenet/model/squeezenet1.0-9");
in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false));
auto frame = MediaFrame::Create<TestMediaBGR>(in_mat);
// ONNX_API code
cv::Mat roi_mat;
preprocess(in_mat(rois.front()), roi_mat, false); // NO normalization for 1.0-9, see #23597
infer<float>(roi_mat, out_onnx);
// G_API code
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
cv::GFrame in;
cv::GOpaque<cv::Rect> rect;
cv::GMat out = cv::gapi::infer<SqueezNet>(rect, in);
cv::GComputation comp(cv::GIn(in, rect), cv::GOut(out));
// NOTE: We have to normalize U8 tensor
// so cfgMeanStd() is here
auto net = cv::gapi::onnx::Params<SqueezNet> {
model_path
}.cfgNormalize({false});
comp.apply(cv::gin(frame, rois.front()),
cv::gout(out_gapi.front()),
cv::compile_args(cv::gapi::networks(net)));
// Validate
validate();
}
TEST_F(ONNXMediaFrame, InferROIYUV)
{
useModel("classification/squeezenet/model/squeezenet1.0-9");
in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false));
const auto frame = MediaFrame::Create<TestMediaNV12>(m_in_y, m_in_uv);
// ONNX_API code
cv::Mat pp;
cvtColorTwoPlane(m_in_y, m_in_uv, pp, cv::COLOR_YUV2BGR_NV12);
cv::Mat roi_mat;
preprocess(pp(rois.front()), roi_mat, false); // NO normalization for 1.0-9, see #23597
infer<float>(roi_mat, out_onnx);
// G_API code
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
cv::GFrame in;
cv::GOpaque<cv::Rect> rect;
cv::GMat out = cv::gapi::infer<SqueezNet>(rect, in);
cv::GComputation comp(cv::GIn(in, rect), cv::GOut(out));
// NOTE: We have to normalize U8 tensor
// so cfgMeanStd() is here
auto net = cv::gapi::onnx::Params<SqueezNet> {
model_path
}.cfgNormalize({false});
comp.apply(cv::gin(frame, rois.front()),
cv::gout(out_gapi.front()),
cv::compile_args(cv::gapi::networks(net)));
// Validate
validate();
}
TEST_F(ONNXMediaFrame, InferListBGR)
{
useModel("classification/squeezenet/model/squeezenet1.0-9");
in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false));
const auto frame = MediaFrame::Create<TestMediaBGR>(in_mat);
// ONNX_API code
for (size_t i = 0; i < rois.size(); ++i) {
cv::Mat roi_mat;
preprocess(in_mat(rois[i]), roi_mat, false); // NO normalization for 1.0-9, see #23597
infer<float>(roi_mat, out_onnx);
}
// G_API code
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
cv::GFrame in;
cv::GArray<cv::Rect> rr;
cv::GArray<cv::GMat> out = cv::gapi::infer<SqueezNet>(rr, in);
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(out));
// NOTE: We have to normalize U8 tensor
// so cfgMeanStd() is here
auto net = cv::gapi::onnx::Params<SqueezNet> {
model_path
}.cfgNormalize({false});
comp.apply(cv::gin(frame, rois),
cv::gout(out_gapi),
cv::compile_args(cv::gapi::networks(net)));
// Validate
validate();
}
TEST_F(ONNXMediaFrame, InferListYUV)
{
useModel("classification/squeezenet/model/squeezenet1.0-9");
in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false));
const auto frame = MediaFrame::Create<TestMediaNV12>(m_in_y, m_in_uv);
// ONNX_API code
cv::Mat pp;
cvtColorTwoPlane(m_in_y, m_in_uv, pp, cv::COLOR_YUV2BGR_NV12);
for (size_t i = 0; i < rois.size(); ++i) {
cv::Mat roi_mat;
preprocess(pp(rois[i]), roi_mat, false); // NO normalization for 1.0-9, see #23597
infer<float>(roi_mat, out_onnx);
}
// G_API code
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
cv::GFrame in;
cv::GArray<cv::Rect> rr;
cv::GArray<cv::GMat> out = cv::gapi::infer<SqueezNet>(rr, in);
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(out));
// NOTE: We have to normalize U8 tensor
// so cfgMeanStd() is here
auto net = cv::gapi::onnx::Params<SqueezNet> {
model_path
}.cfgNormalize({false});
comp.apply(cv::gin(frame, rois),
cv::gout(out_gapi),
cv::compile_args(cv::gapi::networks(net)));
// Validate
validate();
}
TEST_F(ONNXRCNN, InferWithDisabledOut)
{
useModel("object_detection_segmentation/faster-rcnn/model/FasterRCNN-10");
in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false));
cv::Mat pp;
preprocess(in_mat, pp);
// ONNX_API code
infer<float>(pp, out_onnx, {"6379", "6383"});
// G_API code
using FRCNNOUT = std::tuple<cv::GMat, cv::GMat>;
G_API_NET(FasterRCNN, <FRCNNOUT(cv::GMat)>, "FasterRCNN");
auto net = cv::gapi::onnx::Params<FasterRCNN>{model_path}
.cfgOutputLayers({"out1", "out2"})
.cfgPostProc({cv::GMatDesc{CV_32F, {7,4}},
cv::GMatDesc{CV_32F, {7}}}, remapRCNNPortsDO, {"6383", "6379"});
cv::GMat in, out1, out2;
std::tie(out1, out2) = cv::gapi::infer<FasterRCNN>(in);
cv::GComputation comp(cv::GIn(in), cv::GOut(out1, out2));
out_gapi.resize(num_out);
comp.apply(cv::gin(pp),
cv::gout(out_gapi[0], out_gapi[1]),
cv::compile_args(cv::gapi::networks(net)));
// Validate
validate<float>(-1.f);
validate<float>(-1.f);
}
TEST_F(ONNXMediaFrame, InferList2BGR)
{
useModel("classification/squeezenet/model/squeezenet1.0-9");
in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false));
const auto frame = MediaFrame::Create<TestMediaBGR>(in_mat);
// ONNX_API code
for (size_t i = 0; i < rois.size(); ++i) {
cv::Mat roi_mat;
preprocess(in_mat(rois[i]), roi_mat, false); // NO normalization for 1.0-9, see #23597
infer<float>(roi_mat, out_onnx);
}
// G_API code
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
cv::GFrame in;
cv::GArray<cv::Rect> rr;
cv::GArray<cv::GMat> out = cv::gapi::infer2<SqueezNet>(in, rr);
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(out));
// NOTE: We have to normalize U8 tensor
// so cfgMeanStd() is here
auto net = cv::gapi::onnx::Params<SqueezNet> {
model_path
}.cfgNormalize({false});
comp.apply(cv::gin(frame, rois),
cv::gout(out_gapi),
cv::compile_args(cv::gapi::networks(net)));
// Validate
validate();
}
TEST_F(ONNXMediaFrame, InferList2YUV)
{
useModel("classification/squeezenet/model/squeezenet1.0-9");
in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false));
const auto frame = MediaFrame::Create<TestMediaNV12>(m_in_y, m_in_uv);
// ONNX_API code
cv::Mat pp;
cvtColorTwoPlane(m_in_y, m_in_uv, pp, cv::COLOR_YUV2BGR_NV12);
for (size_t i = 0; i < rois.size(); ++i) {
cv::Mat roi_mat;
preprocess(pp(rois[i]), roi_mat);
infer<float>(roi_mat, out_onnx);
}
// G_API code
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
cv::GFrame in;
cv::GArray<cv::Rect> rr;
cv::GArray<cv::GMat> out = cv::gapi::infer2<SqueezNet>(in, rr);
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(out));
// NOTE: We have to normalize U8 tensor
// so cfgMeanStd() is here
auto net = cv::gapi::onnx::Params<SqueezNet> { model_path }.cfgMeanStd({ mean }, { std });
comp.apply(cv::gin(frame, rois),
cv::gout(out_gapi),
cv::compile_args(cv::gapi::networks(net)));
// Validate
validate();
}
TEST_F(ONNXYoloV3, InferConstInput)
{
useModel("object_detection_segmentation/yolov3/model/yolov3-10");
in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false));
constructYoloInputs(in_mat);
// ONNX_API code
infer<float>(ins, out_onnx);
// G_API code
using OUT = std::tuple<cv::GMat, cv::GMat, cv::GMat>;
G_API_NET(YoloNet, <OUT(cv::GMat)>, "yolov3");
auto net = cv::gapi::onnx::Params<YoloNet>{model_path}
.constInput("image_shape", ins[1])
.cfgInputLayers({"input_1"})
.cfgOutputLayers({"out1", "out2", "out3"})
.cfgPostProc({cv::GMatDesc{CV_32F, {1, 10000, 4}},
cv::GMatDesc{CV_32F, {1, 80, 10000}},
cv::GMatDesc{CV_32S, {5, 3}}}, remapYoloV3);
cv::GMat in, out1, out2, out3;
std::tie(out1, out2, out3) = cv::gapi::infer<YoloNet>(in);
cv::GComputation comp(cv::GIn(in), cv::GOut(out1, out2, out3));
out_gapi.resize(num_out);
comp.apply(cv::gin(ins[0]),
cv::gout(out_gapi[0], out_gapi[1], out_gapi[2]),
cv::compile_args(cv::gapi::networks(net)));
// Validate
validate<float>(-1.f);
validate<float>(-1.f);
validate<int>(-1);
}
TEST_F(ONNXYoloV3, InferBSConstInput)
{
// This test checks the case when a const input is used
// and all input layer names are specified.
// Const input has the advantage. It is expected behavior.
useModel("object_detection_segmentation/yolov3/model/yolov3-10");
in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false));
constructYoloInputs(in_mat);
// Tensor with incorrect image size
// is used for check case when InputLayers and constInput have same names
cv::Mat bad_shape;
bad_shape.create(cv::Size(2, 1), CV_32F);
float* ptr = bad_shape.ptr<float>();
ptr[0] = 590;
ptr[1] = 12;
// ONNX_API code
infer<float>(ins, out_onnx);
// G_API code
using OUT = std::tuple<cv::GMat, cv::GMat, cv::GMat>;
G_API_NET(YoloNet, <OUT(cv::GMat, cv::GMat)>, "yolov3");
auto net = cv::gapi::onnx::Params<YoloNet>{model_path}
// Data from const input will be used to infer
.constInput("image_shape", ins[1])
// image_shape - const_input has same name
.cfgInputLayers({"input_1", "image_shape"})
.cfgOutputLayers({"out1", "out2", "out3"})
.cfgPostProc({cv::GMatDesc{CV_32F, {1, 10000, 4}},
cv::GMatDesc{CV_32F, {1, 80, 10000}},
cv::GMatDesc{CV_32S, {5, 3}}}, remapYoloV3);
cv::GMat in1, in2, out1, out2, out3;
std::tie(out1, out2, out3) = cv::gapi::infer<YoloNet>(in1, in2);
cv::GComputation comp(cv::GIn(in1, in2), cv::GOut(out1, out2, out3));
out_gapi.resize(num_out);
comp.apply(cv::gin(ins[0], bad_shape),
cv::gout(out_gapi[0], out_gapi[1], out_gapi[2]),
cv::compile_args(cv::gapi::networks(net)));
// Validate
validate<float>(-1.f);
validate<float>(-1.f);
validate<int>(-1);
}
TEST_F(ONNXRCNN, ConversionInt64to32)
{
useModel("object_detection_segmentation/faster-rcnn/model/FasterRCNN-10");
in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false));
cv::Mat dst;
preprocess(in_mat, dst);
// ONNX_API code
infer<float>(dst, out_onnx);
// G_API code
using FRCNNOUT = std::tuple<cv::GMat,cv::GMat,cv::GMat>;
G_API_NET(FasterRCNN, <FRCNNOUT(cv::GMat)>, "FasterRCNN");
auto net = cv::gapi::onnx::Params<FasterRCNN>{model_path}
.cfgOutputLayers({"out1", "out2", "out3"})
.cfgPostProc({cv::GMatDesc{CV_32F, {7,4}},
cv::GMatDesc{CV_32S, {7}},
cv::GMatDesc{CV_32F, {7}}}, remapRCNNPortsC);
cv::GMat in, out1, out2, out3;
std::tie(out1, out2, out3) = cv::gapi::infer<FasterRCNN>(in);
cv::GComputation comp(cv::GIn(in), cv::GOut(out1, out2, out3));
out_gapi.resize(num_out);
comp.apply(cv::gin(dst),
cv::gout(out_gapi[0], out_gapi[1], out_gapi[2]),
cv::compile_args(cv::gapi::networks(net)));
// Validate
validate<float>(-1.f);
validate<int>(-1);
validate<float>(-1.f);
}
TEST_F(ONNXWithRemap, InferOutReallocation)
{
useModel("object_detection_segmentation/ssd-mobilenetv1/model/ssd_mobilenet_v1_10");
in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false));
// G_API code
G_API_NET(MobileNet, <cv::GMat(cv::GMat)>, "ssd_mobilenet");
auto net = cv::gapi::onnx::Params<MobileNet>{model_path}
.cfgOutputLayers({"detection_boxes"})
.cfgPostProc({cv::GMatDesc{CV_32F, {1,100,4}}}, reallocSSDPort);
cv::GMat in;
cv::GMat out1;
out1 = cv::gapi::infer<MobileNet>(in);
cv::GComputation comp(cv::GIn(in), cv::GOut(out1));
EXPECT_THROW(comp.apply(cv::gin(in_mat),
cv::gout(out_gapi[0]),
cv::compile_args(cv::gapi::networks(net))), std::exception);
}
} // namespace opencv_test
#endif // HAVE_ONNX
|