File: gapi_infer_onnx_test.cpp

package info (click to toggle)
opencv 4.10.0%2Bdfsg-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 282,092 kB
  • sloc: cpp: 1,178,079; xml: 682,621; python: 49,092; lisp: 31,150; java: 25,469; ansic: 11,039; javascript: 6,085; sh: 1,214; cs: 601; perl: 494; objc: 210; makefile: 173
file content (1129 lines) | stat: -rw-r--r-- 42,969 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2020 Intel Corporation

#include "../test_precomp.hpp"

#ifdef HAVE_ONNX

#include <stdexcept>
#include <codecvt> // wstring_convert

#include <onnxruntime_cxx_api.h>
#include <ade/util/iota_range.hpp>
#include <ade/util/algorithm.hpp>
#include <opencv2/gapi/own/convert.hpp>
#include <opencv2/gapi/infer/onnx.hpp>

namespace {
class TestMediaBGR final: public cv::MediaFrame::IAdapter {
    cv::Mat m_mat;
    using Cb = cv::MediaFrame::View::Callback;
    Cb m_cb;

public:
    explicit TestMediaBGR(cv::Mat m, Cb cb = [](){})
        : m_mat(m), m_cb(cb) {
    }
    cv::GFrameDesc meta() const override {
        return cv::GFrameDesc{cv::MediaFormat::BGR, cv::Size(m_mat.cols, m_mat.rows)};
    }
    cv::MediaFrame::View access(cv::MediaFrame::Access) override {
        cv::MediaFrame::View::Ptrs pp = { m_mat.ptr(), nullptr, nullptr, nullptr };
        cv::MediaFrame::View::Strides ss = { m_mat.step, 0u, 0u, 0u };
        return cv::MediaFrame::View(std::move(pp), std::move(ss), Cb{m_cb});
    }
};

class TestMediaNV12 final: public cv::MediaFrame::IAdapter {
    cv::Mat m_y;
    cv::Mat m_uv;
public:
    TestMediaNV12(cv::Mat y, cv::Mat uv) : m_y(y), m_uv(uv) {
    }
    cv::GFrameDesc meta() const override {
        return cv::GFrameDesc{cv::MediaFormat::NV12, cv::Size(m_y.cols, m_y.rows)};
    }
    cv::MediaFrame::View access(cv::MediaFrame::Access) override {
        cv::MediaFrame::View::Ptrs pp = {
            m_y.ptr(), m_uv.ptr(), nullptr, nullptr
        };
        cv::MediaFrame::View::Strides ss = {
            m_y.step, m_uv.step, 0u, 0u
        };
        return cv::MediaFrame::View(std::move(pp), std::move(ss));
    }
};
struct ONNXInitPath {
    ONNXInitPath() {
        const char* env_path = getenv("OPENCV_GAPI_ONNX_MODEL_PATH");
        if (env_path) {
            cvtest::addDataSearchPath(env_path);
        }
    }
};
static ONNXInitPath g_init_path;

cv::Mat initMatrixRandU(const int type, const cv::Size& sz_in) {
    const cv::Mat in_mat = cv::Mat(sz_in, type);

    if (CV_MAT_DEPTH(type) < CV_32F) {
        cv::randu(in_mat, cv::Scalar::all(0), cv::Scalar::all(255));
    } else {
        const int fscale = 256;  // avoid bits near ULP, generate stable test input
        cv::Mat in_mat32s(in_mat.size(), CV_MAKE_TYPE(CV_32S, CV_MAT_CN(type)));
        cv::randu(in_mat32s, cv::Scalar::all(0), cv::Scalar::all(255 * fscale));
        in_mat32s.convertTo(in_mat, type, 1.0f / fscale, 0);
    }
    return in_mat;
}
} // anonymous namespace
namespace opencv_test
{
namespace {

// FIXME: taken from the DNN module
void normAssert(cv::InputArray& ref, cv::InputArray& test,
                const char *comment /*= ""*/,
                const double l1 = 0.00001, const double lInf = 0.0001) {
    const double normL1 = cvtest::norm(ref, test, cv::NORM_L1) / ref.getMat().total();
    EXPECT_LE(normL1, l1) << comment;

    const double normInf = cvtest::norm(ref, test, cv::NORM_INF);
    EXPECT_LE(normInf, lInf) << comment;
}

inline std::string findModel(const std::string &model_name) {
    return findDataFile("vision/" + model_name + ".onnx", false);
}

inline void toCHW(const cv::Mat& src, cv::Mat& dst) {
    dst.create(cv::Size(src.cols, src.rows * src.channels()), CV_32F);
    std::vector<cv::Mat> planes;
    for (int i = 0; i < src.channels(); ++i) {
        planes.push_back(dst.rowRange(i * src.rows, (i + 1) * src.rows));
    }
    cv::split(src, planes);
}

inline int toCV(ONNXTensorElementDataType prec) {
    switch (prec) {
    case ONNX_TENSOR_ELEMENT_DATA_TYPE_UINT8: return CV_8U;
    case ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT: return CV_32F;
    case ONNX_TENSOR_ELEMENT_DATA_TYPE_INT32: return CV_32S;
    case ONNX_TENSOR_ELEMENT_DATA_TYPE_INT64: return CV_32S;
    default: GAPI_Error("Unsupported data type");
    }
    return -1;
}

void copyFromONNX(Ort::Value &v, cv::Mat& mat) {
    const auto info = v.GetTensorTypeAndShapeInfo();
    const auto prec = info.GetElementType();
    const auto shape = info.GetShape();
    const std::vector<int> dims(shape.begin(), shape.end());
    mat.create(dims, toCV(prec));
    switch (prec) {
#define HANDLE(E,T)                                          \
        case E: std::copy_n(v.GetTensorMutableData<T>(),     \
                            mat.total(),                     \
                            reinterpret_cast<T*>(mat.data)); \
            break;
        HANDLE(ONNX_TENSOR_ELEMENT_DATA_TYPE_UINT8, uint8_t);
        HANDLE(ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT, float);
        HANDLE(ONNX_TENSOR_ELEMENT_DATA_TYPE_INT32, int);
#undef HANDLE
        case ONNX_TENSOR_ELEMENT_DATA_TYPE_INT64: {
            const auto o_ptr = v.GetTensorMutableData<int64_t>();
            const auto g_ptr = reinterpret_cast<int*>(mat.data);
            std::transform(o_ptr, o_ptr + mat.total(), g_ptr,
                   [](int64_t el) { return static_cast<int>(el); });
            break;
        }
    default: GAPI_Error("ONNX. Unsupported data type");
    }
}

inline std::vector<int64_t> toORT(const cv::MatSize &sz) {
    return cv::to_own<int64_t>(sz);
}

inline std::vector<const char*> getCharNames(const std::vector<std::string>& names) {
    std::vector<const char*> out_ptrs;
    out_ptrs.reserve(names.size());
    ade::util::transform(names, std::back_inserter(out_ptrs),
                         [](const std::string& name) { return name.c_str(); });
    return out_ptrs;
}

template<typename T>
void copyToOut(const cv::Mat& onnx_out, const T end_mark, cv::Mat& gapi_out) {
    // This function is part of some remap__ function.
    // You can set graph output size (gapi_out) larger than real out from ONNX
    // so you have to add something for separate correct data and garbage.
    // For example, end of data can be marked with -1 (for positive values)
    // or you can put size of correct data at first/last element of output matrix.
    const size_t size = std::min(onnx_out.total(), gapi_out.total());
    std::copy(onnx_out.begin<T>(),
              onnx_out.begin<T>() + size,
              gapi_out.begin<T>());
    if (gapi_out.total() > onnx_out.total()) {
        T* gptr = gapi_out.ptr<T>();
        gptr[size] = end_mark;
    }
}

void remapYolo(const std::unordered_map<std::string, cv::Mat> &onnx,
                     std::unordered_map<std::string, cv::Mat> &gapi) {
    GAPI_Assert(onnx.size() == 1u);
    GAPI_Assert(gapi.size() == 1u);
    // Result from Run method
    const cv::Mat& in = onnx.begin()->second;
    GAPI_Assert(in.depth() == CV_32F);
    // Configured output
    cv::Mat& out = gapi.begin()->second;
    // Simple copy
    copyToOut<float>(in, -1.f, out);
}

void remapYoloV3(const std::unordered_map<std::string, cv::Mat> &onnx,
                       std::unordered_map<std::string, cv::Mat> &gapi) {
    // Simple copy for outputs
    const cv::Mat& in_boxes = onnx.at("yolonms_layer_1/ExpandDims_1:0");
    const cv::Mat& in_scores = onnx.at("yolonms_layer_1/ExpandDims_3:0");
    const cv::Mat& in_indices = onnx.at("yolonms_layer_1/concat_2:0");
    GAPI_Assert(in_boxes.depth() == CV_32F);
    GAPI_Assert(in_scores.depth() == CV_32F);
    GAPI_Assert(in_indices.depth() == CV_32S);

    cv::Mat& out_boxes = gapi.at("out1");
    cv::Mat& out_scores = gapi.at("out2");
    cv::Mat& out_indices = gapi.at("out3");

    copyToOut<float>(in_boxes, -1.f, out_boxes);
    copyToOut<float>(in_scores, -1.f, out_scores);
    copyToOut<int>(in_indices, -1, out_indices);
}

void remapToIESSDOut(const std::vector<cv::Mat> &detections,
                           cv::Mat &ssd_output) {
    GAPI_Assert(detections.size() == 4u);
    for (const auto &det_el : detections) {
        GAPI_Assert(det_el.depth() == CV_32F);
        GAPI_Assert(!det_el.empty());
    }

    // SSD-MobilenetV1 structure check
    ASSERT_EQ(1u, detections[0].total());
    ASSERT_EQ(detections[2].total(), detections[0].total() * 100);
    ASSERT_EQ(detections[2].total(), detections[3].total());
    ASSERT_EQ((detections[2].total() * 4), detections[1].total());

    const int num_objects = static_cast<int>(detections[0].ptr<float>()[0]);
    GAPI_Assert(num_objects <= (ssd_output.size[2] - 1));
    const float *in_boxes = detections[1].ptr<float>();
    const float *in_scores = detections[2].ptr<float>();
    const float *in_classes = detections[3].ptr<float>();
    float *ptr = ssd_output.ptr<float>();

    for (int i = 0; i < num_objects; ++i) {
        ptr[0] = 0.f;                 // "image_id"
        ptr[1] = in_classes[i];       // "label"
        ptr[2] = in_scores[i];        // "confidence"
        ptr[3] = in_boxes[4 * i + 1]; // left
        ptr[4] = in_boxes[4 * i + 0]; // top
        ptr[5] = in_boxes[4 * i + 3]; // right
        ptr[6] = in_boxes[4 * i + 2]; // bottom

        ptr      += 7;
        in_boxes += 4;
    }

    if (num_objects < ssd_output.size[2] - 1) {
        // put a -1 mark at the end of output blob if there is space left
        ptr[0] = -1.f;
    }
}

void remapSSDPorts(const std::unordered_map<std::string, cv::Mat> &onnx,
                         std::unordered_map<std::string, cv::Mat> &gapi) {
    // Assemble ONNX-processed outputs back to a single 1x1x200x7 blob
    // to preserve compatibility with OpenVINO-based SSD pipeline
    const cv::Mat &num_detections = onnx.at("num_detections:0");
    const cv::Mat &detection_boxes = onnx.at("detection_boxes:0");
    const cv::Mat &detection_scores = onnx.at("detection_scores:0");
    const cv::Mat &detection_classes = onnx.at("detection_classes:0");
    cv::Mat &ssd_output = gapi.at("detection_output");
    remapToIESSDOut({num_detections, detection_boxes, detection_scores, detection_classes}, ssd_output);
}

void reallocSSDPort(const std::unordered_map<std::string, cv::Mat> &/*onnx*/,
                          std::unordered_map<std::string, cv::Mat> &gapi) {
    gapi["detection_boxes"].create(1000, 3000, CV_32FC3);
}

void remapRCNNPortsC(const std::unordered_map<std::string, cv::Mat> &onnx,
                          std::unordered_map<std::string, cv::Mat> &gapi) {
    // Simple copy for outputs
    const cv::Mat& in_boxes = onnx.at("6379");
    const cv::Mat& in_labels = onnx.at("6381");
    const cv::Mat& in_scores = onnx.at("6383");

    GAPI_Assert(in_boxes.depth() == CV_32F);
    GAPI_Assert(in_labels.depth() == CV_32S);
    GAPI_Assert(in_scores.depth() == CV_32F);

    cv::Mat& out_boxes = gapi.at("out1");
    cv::Mat& out_labels = gapi.at("out2");
    cv::Mat& out_scores = gapi.at("out3");

    copyToOut<float>(in_boxes, -1.f, out_boxes);
    copyToOut<int>(in_labels, -1, out_labels);
    copyToOut<float>(in_scores, -1.f, out_scores);
}

void remapRCNNPortsDO(const std::unordered_map<std::string, cv::Mat> &onnx,
                          std::unordered_map<std::string, cv::Mat> &gapi) {
    // Simple copy for outputs
    const cv::Mat& in_boxes = onnx.at("6379");
    const cv::Mat& in_scores = onnx.at("6383");
    GAPI_Assert(in_boxes.depth()  == CV_32F);
    GAPI_Assert(in_scores.depth() == CV_32F);
    cv::Mat& out_boxes = gapi.at("out1");
    cv::Mat& out_scores = gapi.at("out2");

    copyToOut<float>(in_boxes, -1.f, out_boxes);
    copyToOut<float>(in_scores, -1.f, out_scores);
}

class ONNXtest : public ::testing::Test {
public:
    std::string model_path;
    size_t num_in, num_out;
    std::vector<cv::Mat> out_gapi;
    std::vector<cv::Mat> out_onnx;
    cv::Mat in_mat;

    ONNXtest() {
        env = Ort::Env(ORT_LOGGING_LEVEL_WARNING, "test");
        memory_info = Ort::MemoryInfo::CreateCpu(OrtArenaAllocator, OrtMemTypeDefault);
        out_gapi.resize(1);
    }

    template<typename T>
    void infer(const std::vector<cv::Mat>& ins,
                     std::vector<cv::Mat>& outs,
                     std::vector<std::string>&& custom_out_names = {}) {
        // Prepare session
#ifndef _WIN32
        session = Ort::Session(env, model_path.c_str(), session_options);
#else
        std::wstring_convert<std::codecvt_utf8<wchar_t>, wchar_t> converter;
        std::wstring w_model_path = converter.from_bytes(model_path.c_str());
        session = Ort::Session(env, w_model_path.c_str(), session_options);
#endif
        num_in = session.GetInputCount();
        num_out = session.GetOutputCount();
        GAPI_Assert(num_in == ins.size());
        in_node_names.clear();
        out_node_names.clear();
        // Inputs Run params
        std::vector<Ort::Value> in_tensors;
        for(size_t i = 0; i < num_in; ++i) {
            auto in_node_name_p = session.GetInputNameAllocated(i, allocator);
            in_node_names.emplace_back(in_node_name_p.get());
            in_node_dims = toORT(ins[i].size);
            in_tensors.emplace_back(Ort::Value::CreateTensor<T>(memory_info,
                                                                const_cast<T*>(ins[i].ptr<T>()),
                                                                ins[i].total(),
                                                                in_node_dims.data(),
                                                                in_node_dims.size()));
        }
        // Outputs Run params
        if (custom_out_names.empty()) {
            for(size_t i = 0; i < num_out; ++i) {
                auto out_node_name_p = session.GetOutputNameAllocated(i, allocator);
                out_node_names.emplace_back(out_node_name_p.get());
            }
        } else {
            out_node_names = std::move(custom_out_names);
        }
        // Input/output order by names
        const auto in_run_names  = getCharNames(in_node_names);
        const auto out_run_names = getCharNames(out_node_names);
        num_out = out_run_names.size();
        // Run
        auto result = session.Run(Ort::RunOptions{nullptr},
                                  in_run_names.data(),
                                  &in_tensors.front(),
                                  num_in,
                                  out_run_names.data(),
                                  num_out);
        // Copy outputs
        GAPI_Assert(result.size() == num_out);
        for (size_t i = 0; i < num_out; ++i) {
            const auto info = result[i].GetTensorTypeAndShapeInfo();
            const auto shape = info.GetShape();
            const auto type = toCV(info.GetElementType());
            const std::vector<int> dims(shape.begin(), shape.end());
            outs.emplace_back(dims, type);
            copyFromONNX(result[i], outs.back());
        }
    }
    // One input/output overload
    template<typename T>
    void infer(const cv::Mat& in, cv::Mat& out) {
        std::vector<cv::Mat> result;
        infer<T>(std::vector<cv::Mat>{in}, result);
        GAPI_Assert(result.size() == 1u);
        out = result.front();
    }
    // One input overload
    template<typename T>
    void infer(const cv::Mat& in,
                     std::vector<cv::Mat>& outs,
                     std::vector<std::string>&& custom_out_names = {}) {
        infer<T>(std::vector<cv::Mat>{in}, outs, std::move(custom_out_names));
    }

    void validate() {
        GAPI_Assert(!out_gapi.empty() && !out_onnx.empty());
        ASSERT_EQ(out_gapi.size(), out_onnx.size());
        const auto size = out_gapi.size();
        for (size_t i = 0; i < size; ++i) {
            normAssert(out_onnx[i], out_gapi[i], "Test outputs");
        }
    }

    void useModel(const std::string& model_name) {
        model_path = findModel(model_name);
    }
private:
    Ort::Env env{nullptr};
    Ort::MemoryInfo memory_info{nullptr};
    Ort::AllocatorWithDefaultOptions allocator;
    Ort::SessionOptions session_options;
    Ort::Session session{nullptr};

    std::vector<int64_t> in_node_dims;
    std::vector<std::string> in_node_names;
    std::vector<std::string> out_node_names;
};

class ONNXClassification : public ONNXtest {
public:
    const cv::Scalar mean = { 0.485, 0.456, 0.406 };
    const cv::Scalar std  = { 0.229, 0.224, 0.225 };

    // Rois for InferList, InferList2
    const std::vector<cv::Rect> rois = {
        cv::Rect(cv::Point{ 0,   0}, cv::Size{80, 120}),
        cv::Rect(cv::Point{50, 100}, cv::Size{250, 360})
    };

    // FIXME(dm): There's too much "preprocess" routines in this file
    // Only one must stay but better design it wisely (and later)
    void preprocess(const cv::Mat& src, cv::Mat& dst, bool norm = true) {
        const int new_h = 224;
        const int new_w = 224;
        cv::Mat tmp, cvt, rsz;
        cv::resize(src, rsz, cv::Size(new_w, new_h));
        rsz.convertTo(cvt, CV_32F, norm ? 1.f / 255 : 1.f);
        tmp = norm
            ? (cvt - mean) / std
            : cvt;
        toCHW(tmp, dst);
        dst = dst.reshape(1, {1, 3, new_h, new_w});
    }
};

class ONNXMediaFrame : public ONNXClassification {
public:
    const std::vector<cv::Rect> rois = {
        cv::Rect(cv::Point{ 0,   0}, cv::Size{80, 120}),
        cv::Rect(cv::Point{50, 100}, cv::Size{250, 360}),
        cv::Rect(cv::Point{70, 10}, cv::Size{20, 260}),
        cv::Rect(cv::Point{5, 15}, cv::Size{200, 160}),
    };
    const cv::Size sz{640, 480};
    const cv::Mat m_in_y = initMatrixRandU(CV_8UC1, sz);
    const cv::Mat m_in_uv = initMatrixRandU(CV_8UC2, sz / 2);
};

class ONNXGRayScale : public ONNXtest {
public:
    void preprocess(const cv::Mat& src, cv::Mat& dst) {
        const int new_h = 64;
        const int new_w = 64;
        cv::Mat cvc, rsz, cvt;
        cv::cvtColor(src, cvc, cv::COLOR_BGR2GRAY);
        cv::resize(cvc, rsz, cv::Size(new_w, new_h));
        rsz.convertTo(cvt, CV_32F);
        toCHW(cvt, dst);
        dst = dst.reshape(1, {1, 1, new_h, new_w});
    }
};

class ONNXWithRemap : public ONNXtest {
private:
    size_t step_by_outs = 0;
public:
    // This function checks each next cv::Mat in out_gapi vector for next call.
    // end_mark is edge of correct data
    template <typename T>
    void validate(const T end_mark) {
        GAPI_Assert(!out_gapi.empty() && !out_onnx.empty());
        ASSERT_EQ(out_gapi.size(), out_onnx.size());
        GAPI_Assert(step_by_outs < out_gapi.size());
        const T* op = out_onnx.at(step_by_outs).ptr<T>();
        const T* gp = out_gapi.at(step_by_outs).ptr<T>();
        // Checking that graph output larger than onnx output
        const auto out_size = std::min(out_onnx.at(step_by_outs).total(), out_gapi.at(step_by_outs).total());
        GAPI_Assert(out_size != 0u);
        for (size_t d_idx = 0; d_idx < out_size; ++d_idx) {
            if (gp[d_idx] == end_mark) break;
            ASSERT_EQ(op[d_idx], gp[d_idx]);
        }
        ++step_by_outs;
    }
};

class ONNXRCNN : public ONNXWithRemap {
private:
    const cv::Scalar rcnn_mean = { 102.9801, 115.9465, 122.7717 };
    const float range_max = 1333;
    const float range_min = 800;
public:
    void preprocess(const cv::Mat& src, cv::Mat& dst) {
        cv::Mat rsz, cvt, chw, mn;
        const auto get_ratio = [&](const int dim) -> float {
                                   return ((dim > range_max) || (dim < range_min))
                                              ? dim > range_max
                                                  ? range_max / dim
                                                  : range_min / dim
                                              : 1.f;
                               };
        const auto ratio_h = get_ratio(src.rows);
        const auto ratio_w = get_ratio(src.cols);
        const auto new_h = static_cast<int>(ratio_h * src.rows);
        const auto new_w = static_cast<int>(ratio_w * src.cols);
        cv::resize(src, rsz, cv::Size(new_w, new_h));
        rsz.convertTo(cvt, CV_32F, 1.f);
        toCHW(cvt, chw);
        mn = chw - rcnn_mean;
        const int padded_h = std::ceil(new_h / 32.f) * 32;
        const int padded_w = std::ceil(new_w / 32.f) * 32;
        cv::Mat pad_im(cv::Size(padded_w, 3 * padded_h), CV_32F, 0.f);
        pad_im(cv::Rect(0, 0, mn.cols, mn.rows)) += mn;
        dst = pad_im.reshape(1, {3, padded_h, padded_w});
    }
};

class ONNXYoloV3 : public ONNXWithRemap {
public:
    std::vector<cv::Mat> ins;

    void constructYoloInputs(const cv::Mat& src) {
        const int yolo_in_h = 416;
        const int yolo_in_w = 416;
        cv::Mat yolov3_input, shape, prep_mat;
        cv::resize(src, yolov3_input, cv::Size(yolo_in_w, yolo_in_h));
        shape.create(cv::Size(2, 1), CV_32F);
        float* ptr = shape.ptr<float>();
        ptr[0] = src.cols;
        ptr[1] = src.rows;
        preprocess(yolov3_input, prep_mat);
        ins = {prep_mat, shape};
    }

private:
    void preprocess(const cv::Mat& src, cv::Mat& dst) {
        cv::Mat cvt;
        src.convertTo(cvt, CV_32F, 1.f / 255.f);
        toCHW(cvt, dst);
        dst = dst.reshape(1, {1, 3, 416, 416});
    }
};
} // anonymous namespace

TEST_F(ONNXClassification, Infer)
{
    useModel("classification/squeezenet/model/squeezenet1.0-9");
    in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false));
    // ONNX_API code
    cv::Mat processed_mat;
    preprocess(in_mat, processed_mat, false); // NO normalization for 1.0-9, see #23597
    infer<float>(processed_mat, out_onnx);
    // G_API code
    G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
    cv::GMat in;
    cv::GMat out = cv::gapi::infer<SqueezNet>(in);
    cv::GComputation comp(cv::GIn(in), cv::GOut(out));
    auto net = cv::gapi::onnx::Params<SqueezNet> {
        model_path
    }.cfgNormalize({false});
    comp.apply(cv::gin(in_mat),
               cv::gout(out_gapi.front()),
               cv::compile_args(cv::gapi::networks(net)));
    // Validate
    validate();
}

TEST_F(ONNXClassification, InferTensor)
{
    useModel("classification/squeezenet/model/squeezenet1.0-9");
    in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false));
    // Create tensor
    cv::Mat tensor;
    preprocess(in_mat, tensor, false); // NO normalization for 1.0-9, see #23597
    // ONNX_API code
    infer<float>(tensor, out_onnx);
    // G_API code
    G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
    cv::GMat in;
    cv::GMat out = cv::gapi::infer<SqueezNet>(in);
    cv::GComputation comp(cv::GIn(in), cv::GOut(out));
    auto net = cv::gapi::onnx::Params<SqueezNet> {
        model_path
    }.cfgNormalize({false});
    comp.apply(cv::gin(tensor),
               cv::gout(out_gapi.front()),
               cv::compile_args(cv::gapi::networks(net)));
    // Validate
    validate();
}

TEST_F(ONNXClassification, InferROI)
{
    useModel("classification/squeezenet/model/squeezenet1.0-9");
    in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false));
    const auto ROI = rois.at(0);
    // ONNX_API code
    cv::Mat roi_mat;
    preprocess(in_mat(ROI), roi_mat, false);  // NO normalization for 1.0-9, see #23597
    infer<float>(roi_mat, out_onnx);
    // G_API code
    G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
    cv::GMat in;
    cv::GOpaque<cv::Rect> rect;
    cv::GMat out = cv::gapi::infer<SqueezNet>(rect, in);
    cv::GComputation comp(cv::GIn(in, rect), cv::GOut(out));
    auto net = cv::gapi::onnx::Params<SqueezNet> {
        model_path
    }.cfgNormalize({false});
    comp.apply(cv::gin(in_mat, ROI),
               cv::gout(out_gapi.front()),
               cv::compile_args(cv::gapi::networks(net)));
    // Validate
    validate();
}

TEST_F(ONNXClassification, InferROIList)
{
    useModel("classification/squeezenet/model/squeezenet1.0-9");
    in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false));
    // ONNX_API code
    for (size_t i = 0; i < rois.size(); ++i) {
        cv::Mat roi_mat;
        preprocess(in_mat(rois[i]), roi_mat, false);  // NO normalization for 1.0-9, see #23597
        infer<float>(roi_mat, out_onnx);
    }
    // G_API code
    G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
    cv::GMat in;
    cv::GArray<cv::Rect> rr;
    cv::GArray<cv::GMat> out = cv::gapi::infer<SqueezNet>(rr, in);
    cv::GComputation comp(cv::GIn(in, rr), cv::GOut(out));
    // NOTE: We have to normalize U8 tensor
    // so cfgMeanStd() is here
    auto net = cv::gapi::onnx::Params<SqueezNet> {
        model_path
    }.cfgNormalize({false});
    comp.apply(cv::gin(in_mat, rois),
               cv::gout(out_gapi),
               cv::compile_args(cv::gapi::networks(net)));
    // Validate
    validate();
}

TEST_F(ONNXClassification, Infer2ROIList)
{
    useModel("classification/squeezenet/model/squeezenet1.0-9");
    in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false));
    // ONNX_API code
    for (size_t i = 0; i < rois.size(); ++i) {
        cv::Mat roi_mat;
        preprocess(in_mat(rois[i]), roi_mat, false);   // NO normalization for 1.0-9, see #23597
        infer<float>(roi_mat, out_onnx);
    }
    // G_API code
    G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
    cv::GMat in;
    cv::GArray<cv::Rect> rr;
    cv::GArray<cv::GMat> out = cv::gapi::infer2<SqueezNet>(in, rr);
    cv::GComputation comp(cv::GIn(in, rr), cv::GOut(out));
    // NOTE: We have to normalize U8 tensor
    // so cfgMeanStd() is here
    auto net = cv::gapi::onnx::Params<SqueezNet> {
        model_path
    }.cfgNormalize({false});
    comp.apply(cv::gin(in_mat, rois),
               cv::gout(out_gapi),
               cv::compile_args(cv::gapi::networks(net)));
    // Validate
    validate();
}

TEST_F(ONNXWithRemap, InferDynamicInputTensor)
{
    useModel("object_detection_segmentation/tiny-yolov2/model/tinyyolov2-8");
    in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false));
    // Create tensor
    cv::Mat cvt, rsz, tensor;
    cv::resize(in_mat, rsz, cv::Size{416, 416});
    rsz.convertTo(cvt, CV_32F, 1.f / 255.f);
    toCHW(cvt, tensor);
    tensor = tensor.reshape(1, {1, 3, 416, 416});
    // ONNX_API code
    infer<float>(tensor, out_onnx);
    // G_API code
    G_API_NET(YoloNet, <cv::GMat(cv::GMat)>, "YoloNet");
    cv::GMat in;
    cv::GMat out = cv::gapi::infer<YoloNet>(in);
    cv::GComputation comp(cv::GIn(in), cv::GOut(out));
    auto net = cv::gapi::onnx::Params<YoloNet>{ model_path }
        .cfgPostProc({cv::GMatDesc{CV_32F, {1, 125, 13, 13}}}, remapYolo)
        .cfgOutputLayers({"out"});
    comp.apply(cv::gin(tensor),
               cv::gout(out_gapi.front()),
               cv::compile_args(cv::gapi::networks(net)));
    // Validate
    validate<float>(-1.f);
}

TEST_F(ONNXGRayScale, InferImage)
{
    useModel("body_analysis/emotion_ferplus/model/emotion-ferplus-8");
    in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false));
    // ONNX_API code
    cv::Mat prep_mat;
    preprocess(in_mat, prep_mat);
    infer<float>(prep_mat, out_onnx);
    // G_API code
    G_API_NET(EmotionNet, <cv::GMat(cv::GMat)>, "emotion-ferplus");
    cv::GMat in;
    cv::GMat out = cv::gapi::infer<EmotionNet>(in);
    cv::GComputation comp(cv::GIn(in), cv::GOut(out));
    auto net = cv::gapi::onnx::Params<EmotionNet> { model_path }
        .cfgNormalize({ false }); // model accepts 0..255 range in FP32;
    comp.apply(cv::gin(in_mat),
               cv::gout(out_gapi.front()),
               cv::compile_args(cv::gapi::networks(net)));
    // Validate
    validate();
}

TEST_F(ONNXWithRemap, InferMultiOutput)
{
    useModel("object_detection_segmentation/ssd-mobilenetv1/model/ssd_mobilenet_v1_10");
    in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false));
    // ONNX_API code
    const auto prep_mat = in_mat.reshape(1, {1, in_mat.rows, in_mat.cols, in_mat.channels()});
    infer<uint8_t>(prep_mat, out_onnx);
    cv::Mat onnx_conv_out({1, 1, 200, 7}, CV_32F);
    remapToIESSDOut({out_onnx[3], out_onnx[0], out_onnx[2], out_onnx[1]}, onnx_conv_out);
    out_onnx.clear();
    out_onnx.push_back(onnx_conv_out);
    // G_API code
    G_API_NET(MobileNet, <cv::GMat(cv::GMat)>, "ssd_mobilenet");
    cv::GMat in;
    cv::GMat out = cv::gapi::infer<MobileNet>(in);
    cv::GComputation comp(cv::GIn(in), cv::GOut(out));
    auto net = cv::gapi::onnx::Params<MobileNet>{ model_path }
        .cfgOutputLayers({"detection_output"})
        .cfgPostProc({cv::GMatDesc{CV_32F, {1, 1, 200, 7}}}, remapSSDPorts);
    comp.apply(cv::gin(in_mat),
               cv::gout(out_gapi.front()),
               cv::compile_args(cv::gapi::networks(net)));
    // Validate
    validate<float>(-1.f);
}

TEST_F(ONNXMediaFrame, InferBGR)
{
    useModel("classification/squeezenet/model/squeezenet1.0-9");
    in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false));
    // ONNX_API code
    cv::Mat processed_mat;
    preprocess(in_mat, processed_mat, false); // NO normalization for 1.0-9, see #23597
    infer<float>(processed_mat, out_onnx);
    // G_API code
    auto frame = MediaFrame::Create<TestMediaBGR>(in_mat);
    G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
    cv::GFrame in;
    cv::GMat out = cv::gapi::infer<SqueezNet>(in);
    cv::GComputation comp(cv::GIn(in), cv::GOut(out));
    // NOTE: We have to normalize U8 tensor
    // so cfgMeanStd() is here
    auto net = cv::gapi::onnx::Params<SqueezNet> {
        model_path
    }.cfgNormalize({false});
    comp.apply(cv::gin(frame),
               cv::gout(out_gapi.front()),
               cv::compile_args(cv::gapi::networks(net)));
    // Validate
    validate();
}

TEST_F(ONNXMediaFrame, InferYUV)
{
    useModel("classification/squeezenet/model/squeezenet1.0-9");
    in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false));
    const auto frame = MediaFrame::Create<TestMediaNV12>(m_in_y, m_in_uv);
    // ONNX_API code
    cv::Mat pp;
    cvtColorTwoPlane(m_in_y, m_in_uv, pp, cv::COLOR_YUV2BGR_NV12);
    cv::Mat processed_mat;
    preprocess(pp, processed_mat, false); // NO normalization for 1.0-9, see #23597
    infer<float>(processed_mat, out_onnx);
    // G_API code
    G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
    cv::GFrame in;
    cv::GMat out = cv::gapi::infer<SqueezNet>(in);
    cv::GComputation comp(cv::GIn(in), cv::GOut(out));
    // NOTE: We have to normalize U8 tensor
    // so cfgMeanStd() is here
    auto net = cv::gapi::onnx::Params<SqueezNet> {
        model_path
    }.cfgNormalize({false});
    comp.apply(cv::gin(frame),
               cv::gout(out_gapi.front()),
               cv::compile_args(cv::gapi::networks(net)));
    // Validate
    validate();
}

TEST_F(ONNXMediaFrame, InferROIBGR)
{
    useModel("classification/squeezenet/model/squeezenet1.0-9");
    in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false));
    auto frame = MediaFrame::Create<TestMediaBGR>(in_mat);
    // ONNX_API code
    cv::Mat roi_mat;
    preprocess(in_mat(rois.front()), roi_mat, false);  // NO normalization for 1.0-9, see #23597
    infer<float>(roi_mat, out_onnx);
    // G_API code
    G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
    cv::GFrame in;
    cv::GOpaque<cv::Rect> rect;
    cv::GMat out = cv::gapi::infer<SqueezNet>(rect, in);
    cv::GComputation comp(cv::GIn(in, rect), cv::GOut(out));
    // NOTE: We have to normalize U8 tensor
    // so cfgMeanStd() is here
    auto net = cv::gapi::onnx::Params<SqueezNet> {
        model_path
    }.cfgNormalize({false});
    comp.apply(cv::gin(frame, rois.front()),
               cv::gout(out_gapi.front()),
               cv::compile_args(cv::gapi::networks(net)));
    // Validate
    validate();
}

TEST_F(ONNXMediaFrame, InferROIYUV)
{
    useModel("classification/squeezenet/model/squeezenet1.0-9");
    in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false));
    const auto frame = MediaFrame::Create<TestMediaNV12>(m_in_y, m_in_uv);
    // ONNX_API code
    cv::Mat pp;
    cvtColorTwoPlane(m_in_y, m_in_uv, pp, cv::COLOR_YUV2BGR_NV12);
    cv::Mat roi_mat;
    preprocess(pp(rois.front()), roi_mat, false);  // NO normalization for 1.0-9, see #23597
    infer<float>(roi_mat, out_onnx);
    // G_API code
    G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
    cv::GFrame in;
    cv::GOpaque<cv::Rect> rect;
    cv::GMat out = cv::gapi::infer<SqueezNet>(rect, in);
    cv::GComputation comp(cv::GIn(in, rect), cv::GOut(out));
    // NOTE: We have to normalize U8 tensor
    // so cfgMeanStd() is here
    auto net = cv::gapi::onnx::Params<SqueezNet> {
        model_path
    }.cfgNormalize({false});
    comp.apply(cv::gin(frame, rois.front()),
               cv::gout(out_gapi.front()),
               cv::compile_args(cv::gapi::networks(net)));
    // Validate
    validate();
}

TEST_F(ONNXMediaFrame, InferListBGR)
{
    useModel("classification/squeezenet/model/squeezenet1.0-9");
    in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false));
    const auto frame = MediaFrame::Create<TestMediaBGR>(in_mat);
    // ONNX_API code
    for (size_t i = 0; i < rois.size(); ++i) {
        cv::Mat roi_mat;
        preprocess(in_mat(rois[i]), roi_mat, false);  // NO normalization for 1.0-9, see #23597
        infer<float>(roi_mat, out_onnx);
    }
    // G_API code
    G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
    cv::GFrame in;
    cv::GArray<cv::Rect> rr;
    cv::GArray<cv::GMat> out = cv::gapi::infer<SqueezNet>(rr, in);
    cv::GComputation comp(cv::GIn(in, rr), cv::GOut(out));
    // NOTE: We have to normalize U8 tensor
    // so cfgMeanStd() is here
    auto net = cv::gapi::onnx::Params<SqueezNet> {
        model_path
    }.cfgNormalize({false});
    comp.apply(cv::gin(frame, rois),
               cv::gout(out_gapi),
               cv::compile_args(cv::gapi::networks(net)));
    // Validate
    validate();
}

TEST_F(ONNXMediaFrame, InferListYUV)
{
    useModel("classification/squeezenet/model/squeezenet1.0-9");
    in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false));
    const auto frame = MediaFrame::Create<TestMediaNV12>(m_in_y, m_in_uv);
    // ONNX_API code
    cv::Mat pp;
    cvtColorTwoPlane(m_in_y, m_in_uv, pp, cv::COLOR_YUV2BGR_NV12);
    for (size_t i = 0; i < rois.size(); ++i) {
        cv::Mat roi_mat;
        preprocess(pp(rois[i]), roi_mat, false);   // NO normalization for 1.0-9, see #23597
        infer<float>(roi_mat, out_onnx);
    }
    // G_API code
    G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
    cv::GFrame in;
    cv::GArray<cv::Rect> rr;
    cv::GArray<cv::GMat> out = cv::gapi::infer<SqueezNet>(rr, in);
    cv::GComputation comp(cv::GIn(in, rr), cv::GOut(out));
    // NOTE: We have to normalize U8 tensor
    // so cfgMeanStd() is here
    auto net = cv::gapi::onnx::Params<SqueezNet> {
        model_path
    }.cfgNormalize({false});
    comp.apply(cv::gin(frame, rois),
               cv::gout(out_gapi),
               cv::compile_args(cv::gapi::networks(net)));
    // Validate
    validate();
}
TEST_F(ONNXRCNN, InferWithDisabledOut)
{
    useModel("object_detection_segmentation/faster-rcnn/model/FasterRCNN-10");
    in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false));
    cv::Mat pp;
    preprocess(in_mat, pp);
    // ONNX_API code
    infer<float>(pp, out_onnx, {"6379", "6383"});
    // G_API code
    using FRCNNOUT = std::tuple<cv::GMat, cv::GMat>;
    G_API_NET(FasterRCNN, <FRCNNOUT(cv::GMat)>, "FasterRCNN");
    auto net = cv::gapi::onnx::Params<FasterRCNN>{model_path}
        .cfgOutputLayers({"out1", "out2"})
        .cfgPostProc({cv::GMatDesc{CV_32F, {7,4}},
                      cv::GMatDesc{CV_32F, {7}}}, remapRCNNPortsDO, {"6383", "6379"});
    cv::GMat in, out1, out2;
    std::tie(out1, out2) = cv::gapi::infer<FasterRCNN>(in);
    cv::GComputation comp(cv::GIn(in), cv::GOut(out1, out2));
    out_gapi.resize(num_out);
    comp.apply(cv::gin(pp),
               cv::gout(out_gapi[0], out_gapi[1]),
               cv::compile_args(cv::gapi::networks(net)));
    // Validate
    validate<float>(-1.f);
    validate<float>(-1.f);
}

TEST_F(ONNXMediaFrame, InferList2BGR)
{
    useModel("classification/squeezenet/model/squeezenet1.0-9");
    in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false));
    const auto frame = MediaFrame::Create<TestMediaBGR>(in_mat);
    // ONNX_API code
    for (size_t i = 0; i < rois.size(); ++i) {
        cv::Mat roi_mat;
        preprocess(in_mat(rois[i]), roi_mat, false);  // NO normalization for 1.0-9, see #23597
        infer<float>(roi_mat, out_onnx);
    }
    // G_API code
    G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
    cv::GFrame in;
    cv::GArray<cv::Rect> rr;
    cv::GArray<cv::GMat> out = cv::gapi::infer2<SqueezNet>(in, rr);
    cv::GComputation comp(cv::GIn(in, rr), cv::GOut(out));
    // NOTE: We have to normalize U8 tensor
    // so cfgMeanStd() is here
    auto net = cv::gapi::onnx::Params<SqueezNet> {
        model_path
    }.cfgNormalize({false});
    comp.apply(cv::gin(frame, rois),
               cv::gout(out_gapi),
               cv::compile_args(cv::gapi::networks(net)));
    // Validate
    validate();
}

TEST_F(ONNXMediaFrame, InferList2YUV)
{
    useModel("classification/squeezenet/model/squeezenet1.0-9");
    in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false));
    const auto frame = MediaFrame::Create<TestMediaNV12>(m_in_y, m_in_uv);
    // ONNX_API code
    cv::Mat pp;
    cvtColorTwoPlane(m_in_y, m_in_uv, pp, cv::COLOR_YUV2BGR_NV12);
    for (size_t i = 0; i < rois.size(); ++i) {
        cv::Mat roi_mat;
        preprocess(pp(rois[i]), roi_mat);
        infer<float>(roi_mat, out_onnx);
    }
    // G_API code
    G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
    cv::GFrame in;
    cv::GArray<cv::Rect> rr;
    cv::GArray<cv::GMat> out = cv::gapi::infer2<SqueezNet>(in, rr);
    cv::GComputation comp(cv::GIn(in, rr), cv::GOut(out));
    // NOTE: We have to normalize U8 tensor
    // so cfgMeanStd() is here
    auto net = cv::gapi::onnx::Params<SqueezNet> { model_path }.cfgMeanStd({ mean }, { std });
    comp.apply(cv::gin(frame, rois),
               cv::gout(out_gapi),
               cv::compile_args(cv::gapi::networks(net)));
    // Validate
    validate();
}

TEST_F(ONNXYoloV3, InferConstInput)
{
    useModel("object_detection_segmentation/yolov3/model/yolov3-10");
    in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false));
    constructYoloInputs(in_mat);
    // ONNX_API code
    infer<float>(ins, out_onnx);
    // G_API code
    using OUT = std::tuple<cv::GMat, cv::GMat, cv::GMat>;
    G_API_NET(YoloNet, <OUT(cv::GMat)>, "yolov3");
    auto net = cv::gapi::onnx::Params<YoloNet>{model_path}
        .constInput("image_shape", ins[1])
        .cfgInputLayers({"input_1"})
        .cfgOutputLayers({"out1", "out2", "out3"})
        .cfgPostProc({cv::GMatDesc{CV_32F, {1, 10000, 4}},
                      cv::GMatDesc{CV_32F, {1, 80, 10000}},
                      cv::GMatDesc{CV_32S, {5, 3}}}, remapYoloV3);
    cv::GMat in, out1, out2, out3;
    std::tie(out1, out2, out3) = cv::gapi::infer<YoloNet>(in);
    cv::GComputation comp(cv::GIn(in), cv::GOut(out1, out2, out3));
    out_gapi.resize(num_out);
    comp.apply(cv::gin(ins[0]),
               cv::gout(out_gapi[0], out_gapi[1], out_gapi[2]),
               cv::compile_args(cv::gapi::networks(net)));
    // Validate
    validate<float>(-1.f);
    validate<float>(-1.f);
    validate<int>(-1);
}

TEST_F(ONNXYoloV3, InferBSConstInput)
{
    // This test checks the case when a const input is used
    // and all input layer names are specified.
    // Const input has the advantage. It is expected behavior.
    useModel("object_detection_segmentation/yolov3/model/yolov3-10");
    in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false));
    constructYoloInputs(in_mat);
    // Tensor with incorrect image size
    // is used for check case when InputLayers and constInput have same names
    cv::Mat bad_shape;
    bad_shape.create(cv::Size(2, 1), CV_32F);
    float* ptr = bad_shape.ptr<float>();
    ptr[0] = 590;
    ptr[1] = 12;
    // ONNX_API code
    infer<float>(ins, out_onnx);
    // G_API code
    using OUT = std::tuple<cv::GMat, cv::GMat, cv::GMat>;
    G_API_NET(YoloNet, <OUT(cv::GMat, cv::GMat)>, "yolov3");
    auto net = cv::gapi::onnx::Params<YoloNet>{model_path}
    // Data from const input will be used to infer
        .constInput("image_shape", ins[1])
    // image_shape - const_input has same name
        .cfgInputLayers({"input_1", "image_shape"})
        .cfgOutputLayers({"out1", "out2", "out3"})
        .cfgPostProc({cv::GMatDesc{CV_32F, {1, 10000, 4}},
                      cv::GMatDesc{CV_32F, {1, 80, 10000}},
                      cv::GMatDesc{CV_32S, {5, 3}}}, remapYoloV3);
    cv::GMat in1, in2, out1, out2, out3;
    std::tie(out1, out2, out3) = cv::gapi::infer<YoloNet>(in1, in2);
    cv::GComputation comp(cv::GIn(in1, in2), cv::GOut(out1, out2, out3));
    out_gapi.resize(num_out);
    comp.apply(cv::gin(ins[0], bad_shape),
               cv::gout(out_gapi[0], out_gapi[1], out_gapi[2]),
               cv::compile_args(cv::gapi::networks(net)));
    // Validate
    validate<float>(-1.f);
    validate<float>(-1.f);
    validate<int>(-1);
}

TEST_F(ONNXRCNN, ConversionInt64to32)
{
    useModel("object_detection_segmentation/faster-rcnn/model/FasterRCNN-10");
    in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false));
    cv::Mat dst;
    preprocess(in_mat, dst);
    // ONNX_API code
    infer<float>(dst, out_onnx);
    // G_API code
    using FRCNNOUT = std::tuple<cv::GMat,cv::GMat,cv::GMat>;
    G_API_NET(FasterRCNN, <FRCNNOUT(cv::GMat)>, "FasterRCNN");
    auto net = cv::gapi::onnx::Params<FasterRCNN>{model_path}
        .cfgOutputLayers({"out1", "out2", "out3"})
        .cfgPostProc({cv::GMatDesc{CV_32F, {7,4}},
                      cv::GMatDesc{CV_32S, {7}},
                      cv::GMatDesc{CV_32F, {7}}}, remapRCNNPortsC);
    cv::GMat in, out1, out2, out3;
    std::tie(out1, out2, out3) = cv::gapi::infer<FasterRCNN>(in);
    cv::GComputation comp(cv::GIn(in), cv::GOut(out1, out2, out3));
    out_gapi.resize(num_out);
    comp.apply(cv::gin(dst),
               cv::gout(out_gapi[0], out_gapi[1], out_gapi[2]),
               cv::compile_args(cv::gapi::networks(net)));
    // Validate
    validate<float>(-1.f);
    validate<int>(-1);
    validate<float>(-1.f);
}

TEST_F(ONNXWithRemap, InferOutReallocation)
{
    useModel("object_detection_segmentation/ssd-mobilenetv1/model/ssd_mobilenet_v1_10");
    in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false));
    // G_API code
    G_API_NET(MobileNet, <cv::GMat(cv::GMat)>, "ssd_mobilenet");
    auto net = cv::gapi::onnx::Params<MobileNet>{model_path}
        .cfgOutputLayers({"detection_boxes"})
        .cfgPostProc({cv::GMatDesc{CV_32F, {1,100,4}}}, reallocSSDPort);
    cv::GMat in;
    cv::GMat out1;
    out1 = cv::gapi::infer<MobileNet>(in);
    cv::GComputation comp(cv::GIn(in), cv::GOut(out1));
    EXPECT_THROW(comp.apply(cv::gin(in_mat),
                 cv::gout(out_gapi[0]),
                 cv::compile_args(cv::gapi::networks(net))), std::exception);
}

} // namespace opencv_test

#endif //  HAVE_ONNX