1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
|
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2018-2020 Intel Corporation
#include "../test_precomp.hpp"
#include <ade/util/zip_range.hpp> // util::indexed
#include <opencv2/gapi/gkernel.hpp>
#include <opencv2/gapi/gcommon.hpp>
#include "compiler/gmodelbuilder.hpp"
#include "compiler/gmodel.hpp" // RcDesc, GModel::init
namespace opencv_test
{
namespace test
{
namespace
{
namespace D = cv::detail;
cv::GMat unaryOp(cv::GMat m)
{
return cv::GCall(cv::GKernel{ "gapi.test.unaryop"
, ""
, nullptr
, { GShape::GMAT }
, { D::OpaqueKind::CV_UNKNOWN }
, { D::HostCtor{cv::util::monostate{}} }
, { D::OpaqueKind::CV_UNKNOWN }
}).pass(m).yield(0);
}
cv::GMat binaryOp(cv::GMat m1, cv::GMat m2)
{
return cv::GCall(cv::GKernel{ "gapi.test.binaryOp"
, ""
, nullptr
, { GShape::GMAT }
, { D::OpaqueKind::CV_UNKNOWN, D::OpaqueKind::CV_UNKNOWN }
, { D::HostCtor{cv::util::monostate{}} }
, { D::OpaqueKind::CV_UNKNOWN}
}).pass(m1, m2).yield(0);
}
std::vector<ade::NodeHandle> collectOperations(const cv::gimpl::GModel::Graph& gr)
{
std::vector<ade::NodeHandle> ops;
for (const auto& nh : gr.nodes())
{
if (gr.metadata(nh).get<cv::gimpl::NodeType>().t == cv::gimpl::NodeType::OP)
ops.push_back(nh);
}
return ops;
}
ade::NodeHandle inputOf(cv::gimpl::GModel::Graph& gm, ade::NodeHandle nh, std::size_t port)
{
for (const auto& eh : nh->inEdges())
{
if (gm.metadata(eh).get<cv::gimpl::Input>().port == port)
{
return eh->srcNode();
}
}
util::throw_error(std::logic_error("port " + std::to_string(port) + " not found"));
}
}
}// namespace opencv_test::test
TEST(GModelBuilder, Unroll_TestUnary)
{
cv::GMat in;
cv::GMat out = test::unaryOp(in);
auto unrolled = cv::gimpl::unrollExpr(cv::GIn(in).m_args, cv::GOut(out).m_args);
EXPECT_EQ(1u, unrolled.all_ops.size()); // There is one operation
EXPECT_EQ(2u, unrolled.all_data.size()); // And two data objects (in, out)
// TODO check what the operation is, and so on, and so on
}
TEST(GModelBuilder, Unroll_TestUnaryOfUnary)
{
cv::GMat in;
cv::GMat out = test::unaryOp(test::unaryOp(in));
auto unrolled = cv::gimpl::unrollExpr(cv::GIn(in).m_args, cv::GOut(out).m_args);
EXPECT_EQ(2u, unrolled.all_ops.size()); // There're two operations
EXPECT_EQ(3u, unrolled.all_data.size()); // And three data objects (in, out)
// TODO check what the operation is, and so on, and so on
}
TEST(GModelBuilder, Unroll_Not_All_Protocol_Inputs_Are_Reached)
{
cv::GMat in1, in2; // in1 -> unaryOp() -> u_op1 -> unaryOp() -> out
auto u_op1 = test::unaryOp(in1); // in2 -> unaryOp() -> u_op2
auto u_op2 = test::unaryOp(in2);
auto out = test::unaryOp(u_op1);
EXPECT_THROW(cv::gimpl::unrollExpr(cv::GIn(in1, in2).m_args, cv::GOut(out).m_args), std::logic_error);
}
TEST(GModelBuilder, Unroll_Parallel_Path)
{
cv::GMat in1, in2; // in1 -> unaryOp() -> out1
auto out1 = test::unaryOp(in1); // in2 -> unaryOp() -> out2
auto out2 = test::unaryOp(in2);
auto unrolled = cv::gimpl::unrollExpr(cv::GIn(in1, in2).m_args, cv::GOut(out1, out2).m_args);
EXPECT_EQ(unrolled.all_ops.size(), 2u);
EXPECT_EQ(unrolled.all_data.size(), 4u);
}
TEST(GModelBuilder, Unroll_WithBranch)
{
// in -> unaryOp() -> tmp -->unaryOp() -> out1
// `---->unaryOp() -> out2
GMat in;
auto tmp = test::unaryOp(in);
auto out1 = test::unaryOp(tmp);
auto out2 = test::unaryOp(tmp);
auto unrolled = cv::gimpl::unrollExpr(cv::GIn(in).m_args, cv::GOut(out1, out2).m_args);
EXPECT_EQ(unrolled.all_ops.size(), 3u);
EXPECT_EQ(unrolled.all_data.size(), 4u);
}
TEST(GModelBuilder, Build_Unary)
{
cv::GMat in;
cv::GMat out = test::unaryOp(in);
ade::Graph g;
cv::gimpl::GModel::Graph gm(g);
cv::gimpl::GModel::init(gm);
cv::gimpl::GModelBuilder(g).put(cv::GIn(in).m_args, cv::GOut(out).m_args);
EXPECT_EQ(3u, static_cast<std::size_t>(g.nodes().size())); // Generated graph should have three nodes
// TODO: Check what the nodes are
}
TEST(GModelBuilder, Constant_GScalar)
{
// in -> addC()-----(GMat)---->mulC()-----(GMat)---->unaryOp()----out
// ^ ^
// | |
// 3-------` c_s-------'
cv::GMat in;
cv::GScalar c_s = 5;
auto out = test::unaryOp((in + 3) * c_s); // 3 converted to GScalar
ade::Graph g;
cv::gimpl::GModel::Graph gm(g);
cv::gimpl::GModel::init(gm);
auto proto_slots = cv::gimpl::GModelBuilder(g).put(cv::GIn(in).m_args, cv::GOut(out).m_args);
cv::gimpl::Protocol p;
std::tie(p.inputs, p.outputs, p.in_nhs, p.out_nhs) = proto_slots;
auto in_nh = p.in_nhs.front();
auto addC_nh = in_nh->outNodes().front();
auto mulC_nh = addC_nh->outNodes().front()->outNodes().front();
ASSERT_TRUE(gm.metadata(addC_nh).get<cv::gimpl::NodeType>().t == cv::gimpl::NodeType::OP);
ASSERT_TRUE(gm.metadata(mulC_nh).get<cv::gimpl::NodeType>().t == cv::gimpl::NodeType::OP);
auto s_3 = test::inputOf(gm, addC_nh, 1);
auto s_5 = test::inputOf(gm, mulC_nh, 1);
EXPECT_EQ(9u, static_cast<std::size_t>(g.nodes().size())); // 6 data nodes (1 -input, 1 output, 2 constant, 2 temp) and 3 op nodes
EXPECT_EQ(2u, static_cast<std::size_t>(addC_nh->inNodes().size())); // in and 3
EXPECT_EQ(2u, static_cast<std::size_t>(mulC_nh->inNodes().size())); // addC output and c_s
EXPECT_EQ(3, (util::get<cv::Scalar>(gm.metadata(s_3).get<cv::gimpl::ConstValue>().arg))[0]);
EXPECT_EQ(5, (util::get<cv::Scalar>(gm.metadata(s_5).get<cv::gimpl::ConstValue>().arg))[0]);
}
TEST(GModelBuilder, Check_Multiple_Outputs)
{
// ------------------------------> r
// '
// ' -----------> i_out1
// ' '
// in ----> split3() ---> g ---> integral()
// ' '
// ' -----------> i_out2
// '
// '---------> b ---> unaryOp() ---> u_out
cv::GMat in, r, g, b, i_out1, i_out2, u_out;
std::tie(r, g, b) = cv::gapi::split3(in);
std::tie(i_out1, i_out2) = cv::gapi::integral(g, 1, 1);
u_out = test::unaryOp(b);
ade::Graph gr;
cv::gimpl::GModel::Graph gm(gr);
cv::gimpl::GModel::init(gm);
auto proto_slots = cv::gimpl::GModelBuilder(gr).put(cv::GIn(in).m_args, cv::GOut(r, i_out1, i_out2, u_out).m_args);
cv::gimpl::Protocol p;
std::tie(p.inputs, p.outputs, p.in_nhs, p.out_nhs) = proto_slots;
EXPECT_EQ(4u, static_cast<std::size_t>(p.out_nhs.size()));
EXPECT_EQ(0u, gm.metadata(p.out_nhs[0]->inEdges().front()).get<cv::gimpl::Output>().port);
EXPECT_EQ(0u, gm.metadata(p.out_nhs[1]->inEdges().front()).get<cv::gimpl::Output>().port);
EXPECT_EQ(1u, gm.metadata(p.out_nhs[2]->inEdges().front()).get<cv::gimpl::Output>().port);
EXPECT_EQ(0u, gm.metadata(p.out_nhs[3]->inEdges().front()).get<cv::gimpl::Output>().port);
for (const auto it : ade::util::indexed(p.out_nhs))
{
const auto& out_nh = ade::util::value(it);
EXPECT_EQ(cv::gimpl::NodeType::DATA, gm.metadata(out_nh).get<cv::gimpl::NodeType>().t);
EXPECT_EQ(GShape::GMAT, gm.metadata(out_nh).get<cv::gimpl::Data>().shape);
}
}
TEST(GModelBuilder, Unused_Outputs)
{
cv::GMat in;
auto yuv_p = cv::gapi::split3(in);
ade::Graph g;
cv::gimpl::GModel::Graph gm(g);
cv::gimpl::GModel::init(gm);
cv::gimpl::GModelBuilder(g).put(cv::GIn(in).m_args, cv::GOut(std::get<0>(yuv_p)).m_args);
EXPECT_EQ(5u, static_cast<std::size_t>(g.nodes().size())); // 1 input, 1 operation, 3 outputs
}
TEST(GModelBuilder, Work_With_One_Channel_From_Split3)
{
cv::GMat in, y, u, v;
std::tie(y, u, v) = cv::gapi::split3(in);
auto y_blur = cv::gapi::gaussianBlur(y, cv::Size(3, 3), 1);
ade::Graph g;
cv::gimpl::GModel::Graph gm(g);
cv::gimpl::GModel::init(gm);
cv::gimpl::GModelBuilder(g).put(cv::GIn(in).m_args, cv::GOut(y_blur).m_args);
EXPECT_EQ(7u, static_cast<std::size_t>(g.nodes().size())); // 1 input, 2 operation, 3 nodes from split3, 1 output
}
TEST(GModelBuilder, Add_Nodes_To_Unused_Nodes)
{
cv::GMat in, y, u, v;
std::tie(y, u, v) = cv::gapi::split3(in);
auto y_blur = cv::gapi::gaussianBlur(y, cv::Size(3, 3), 1);
// unused nodes
auto u_blur = cv::gapi::gaussianBlur(y, cv::Size(3, 3), 1);
auto v_blur = cv::gapi::gaussianBlur(y, cv::Size(3, 3), 1);
ade::Graph g;
cv::gimpl::GModel::Graph gm(g);
cv::gimpl::GModel::init(gm);
cv::gimpl::GModelBuilder(g).put(cv::GIn(in).m_args, cv::GOut(y_blur).m_args);
EXPECT_EQ(7u, static_cast<std::size_t>(g.nodes().size())); // 1 input, 2 operation, 3 nodes from split3, 1 output
}
TEST(GModelBuilder, Unlisted_Inputs)
{
// in1 -> binaryOp() -> out
// ^
// |
// in2 ----'
cv::GMat in1, in2;
auto out = test::binaryOp(in1, in2);
ade::Graph g;
cv::gimpl::GModel::Graph gm(g);
cv::gimpl::GModel::init(gm);
// add required 2 inputs but pass 1
EXPECT_THROW(cv::gimpl::GModelBuilder(g).put(cv::GIn(in1).m_args, cv::GOut(out).m_args), std::logic_error);
}
TEST(GModelBuilder, Unroll_No_Link_Between_In_And_Out)
{
// in -> unaryOp() -> u_op
// other -> unaryOp() -> out
cv::GMat in, other;
auto u_op = test::unaryOp(in);
auto out = test::unaryOp(other);
EXPECT_THROW(cv::gimpl::unrollExpr(cv::GIn(in).m_args, cv::GOut(out).m_args), std::logic_error);
}
TEST(GModel_builder, Check_Binary_Op)
{
// in1 -> binaryOp() -> out
// ^
// |
// in2 -----'
cv::GMat in1, in2;
auto out = test::binaryOp(in1, in2);
ade::Graph g;
cv::gimpl::GModel::Graph gm(g);
cv::gimpl::GModel::init(gm);
auto proto_slots = cv::gimpl::GModelBuilder(g).put(cv::GIn(in1, in2).m_args, cv::GOut(out).m_args);
cv::gimpl::Protocol p;
std::tie(p.inputs, p.outputs, p.in_nhs, p.out_nhs) = proto_slots;
auto ops = test::collectOperations(g);
EXPECT_EQ(1u, ops.size());
EXPECT_EQ("gapi.test.binaryOp", gm.metadata(ops.front()).get<cv::gimpl::Op>().k.name);
EXPECT_EQ(2u, static_cast<std::size_t>(ops.front()->inEdges().size()));
EXPECT_EQ(1u, static_cast<std::size_t>(ops.front()->outEdges().size()));
EXPECT_EQ(1u, static_cast<std::size_t>(ops.front()->outNodes().size()));
}
TEST(GModelBuilder, Add_Operation_With_Two_Out_One_Time)
{
// in -> integral() --> out_b1 -> unaryOp() -> out1
// |
// '-------> out_b2 -> unaryOp() -> out2
cv::GMat in, out_b1, out_b2;
std::tie(out_b1, out_b2) = cv::gapi::integral(in, 1, 1);
auto out1 = test::unaryOp(out_b1);
auto out2 = test::unaryOp(out_b1);
ade::Graph g;
cv::gimpl::GModel::Graph gm(g);
cv::gimpl::GModel::init(gm);
auto proto_slots = cv::gimpl::GModelBuilder(g).put(cv::GIn(in).m_args, cv::GOut(out1, out2).m_args);
auto ops = test::collectOperations(gm);
cv::gimpl::Protocol p;
std::tie(p.inputs, p.outputs, p.in_nhs, p.out_nhs) = proto_slots;
auto integral_nh = p.in_nhs.front()->outNodes().front();
EXPECT_EQ(3u, ops.size());
EXPECT_EQ("org.opencv.core.matrixop.integral", gm.metadata(integral_nh).get<cv::gimpl::Op>().k.name);
EXPECT_EQ(1u, static_cast<std::size_t>(integral_nh->inEdges().size()));
EXPECT_EQ(2u, static_cast<std::size_t>(integral_nh->outEdges().size()));
EXPECT_EQ(2u, static_cast<std::size_t>(integral_nh->outNodes().size()));
}
TEST(GModelBuilder, Add_Operation_With_One_Out_One_Time)
{
// in1 -> binaryOp() -> b_out -> unaryOp() -> out1
// ^ |
// | |
// in2 ------- '----> unaryOp() -> out2
cv::GMat in1, in2;
auto b_out = test::binaryOp(in1, in2);
auto out1 = test::unaryOp(b_out);
auto out2 = test::unaryOp(b_out);
ade::Graph g;
cv::gimpl::GModel::Graph gm(g);
cv::gimpl::GModel::init(gm);
auto proto_slots = cv::gimpl::GModelBuilder(g).put(cv::GIn(in1, in2).m_args, cv::GOut(out1, out2).m_args);
cv::gimpl::Protocol p;
std::tie(p.inputs, p.outputs, p.in_nhs, p.out_nhs) = proto_slots;
cv::gimpl::GModel::Graph gr(g);
auto binaryOp_nh = p.in_nhs.front()->outNodes().front();
EXPECT_EQ(2u, static_cast<std::size_t>(binaryOp_nh->inEdges().size()));
EXPECT_EQ(1u, static_cast<std::size_t>(binaryOp_nh->outEdges().size()));
EXPECT_EQ(8u, static_cast<std::size_t>(g.nodes().size()));
}
} // namespace opencv_test
|