1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
|
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2018 Intel Corporation
#include "../test_precomp.hpp"
#include "../common/gapi_tests_common.hpp"
#include "api/gcomputation_priv.hpp"
#include <opencv2/gapi/fluid/gfluidkernel.hpp>
#include <opencv2/gapi/fluid/core.hpp>
#include <opencv2/gapi/fluid/imgproc.hpp>
namespace opencv_test
{
TEST(GComputationCompile, NoRecompileWithSameMeta)
{
cv::GMat in;
cv::GComputation cc(in, in+in);
cv::Mat in_mat1 = cv::Mat::eye (32, 32, CV_8UC1);
cv::Mat in_mat2 = cv::Mat::zeros(32, 32, CV_8UC1);
cv::Mat out_mat;
cc.apply(in_mat1, out_mat);
auto comp1 = cc.priv().m_lastCompiled;
cc.apply(in_mat2, out_mat);
auto comp2 = cc.priv().m_lastCompiled;
// Both compiled objects are actually the same unique executable
EXPECT_EQ(&comp1.priv(), &comp2.priv());
}
TEST(GComputationCompile, NoRecompileWithWrongMeta)
{
cv::GMat in;
cv::GComputation cc(in, in+in);
cv::Mat in_mat1 = cv::Mat::eye (32, 32, CV_8UC1);
cv::Mat in_mat2 = cv::Mat::zeros(32, 32, CV_8UC1);
cv::Mat out_mat;
cc.apply(in_mat1, out_mat);
auto comp1 = cc.priv().m_lastCompiled;
EXPECT_THROW(cc.apply(cv::gin(cv::Scalar(128)), cv::gout(out_mat)), std::logic_error);
auto comp2 = cc.priv().m_lastCompiled;
// Both compiled objects are actually the same unique executable
EXPECT_EQ(&comp1.priv(), &comp2.priv());
}
TEST(GComputationCompile, RecompileWithDifferentMeta)
{
cv::GMat in;
cv::GComputation cc(in, in+in);
cv::Mat in_mat1 = cv::Mat::eye (32, 32, CV_8UC1);
cv::Mat in_mat2 = cv::Mat::zeros(64, 64, CV_32F);
cv::Mat out_mat;
cc.apply(in_mat1, out_mat);
auto comp1 = cc.priv().m_lastCompiled;
cc.apply(in_mat2, out_mat);
auto comp2 = cc.priv().m_lastCompiled;
// Both compiled objects are different
EXPECT_NE(&comp1.priv(), &comp2.priv());
}
TEST(GComputationCompile, FluidReshapeWithDifferentDims)
{
cv::GMat in;
cv::GComputation cc(in, in+in);
cv::Mat in_mat1 = cv::Mat::eye (32, 32, CV_8UC1);
cv::Mat in_mat2 = cv::Mat::zeros(64, 64, CV_8UC1);
cv::Mat out_mat;
cc.apply(in_mat1, out_mat, cv::compile_args(cv::gapi::core::fluid::kernels()));
auto comp1 = cc.priv().m_lastCompiled;
cc.apply(in_mat2, out_mat);
auto comp2 = cc.priv().m_lastCompiled;
// Both compiled objects are actually the same unique executable
EXPECT_EQ(&comp1.priv(), &comp2.priv());
}
TEST(GComputationCompile, FluidReshapeResizeDownScale)
{
cv::Size szOut(4, 4);
cv::GMat in;
cv::GComputation cc(in, cv::gapi::resize(in, szOut));
cv::Mat in_mat1( 8, 8, CV_8UC3);
cv::Mat in_mat2(16, 16, CV_8UC3);
cv::randu(in_mat1, cv::Scalar::all(0), cv::Scalar::all(255));
cv::randu(in_mat2, cv::Scalar::all(0), cv::Scalar::all(255));
cv::Mat out_mat1, out_mat2;
cc.apply(in_mat1, out_mat1, cv::compile_args(cv::gapi::imgproc::fluid::kernels()));
auto comp1 = cc.priv().m_lastCompiled;
cc.apply(in_mat2, out_mat2);
auto comp2 = cc.priv().m_lastCompiled;
// Both compiled objects are actually the same unique executable
EXPECT_EQ(&comp1.priv(), &comp2.priv());
cv::Mat cv_out_mat1, cv_out_mat2;
cv::resize(in_mat1, cv_out_mat1, szOut);
cv::resize(in_mat2, cv_out_mat2, szOut);
// Fluid's and OpenCV's resizes aren't bit exact.
// So 1 is here because it is max difference between them.
EXPECT_TRUE(Tolerance_FloatRel_IntAbs(1e-5, 1).to_compare_f()(out_mat1, cv_out_mat1));
EXPECT_TRUE(Tolerance_FloatRel_IntAbs(1e-5, 1).to_compare_f()(out_mat2, cv_out_mat2));
}
TEST(GComputationCompile, FluidReshapeSwitchToUpscaleFromDownscale)
{
cv::Size szOut(4, 4);
cv::GMat in;
cv::GComputation cc(in, cv::gapi::resize(in, szOut));
cv::Mat in_mat1( 8, 8, CV_8UC3);
cv::Mat in_mat2( 2, 2, CV_8UC3);
cv::Mat in_mat3(16, 16, CV_8UC3);
cv::randu(in_mat1, cv::Scalar::all(0), cv::Scalar::all(255));
cv::randu(in_mat2, cv::Scalar::all(0), cv::Scalar::all(255));
cv::randu(in_mat3, cv::Scalar::all(0), cv::Scalar::all(255));
cv::Mat out_mat1, out_mat2, out_mat3;
cc.apply(in_mat1, out_mat1, cv::compile_args(cv::gapi::imgproc::fluid::kernels()));
auto comp1 = cc.priv().m_lastCompiled;
cc.apply(in_mat2, out_mat2);
auto comp2 = cc.priv().m_lastCompiled;
cc.apply(in_mat3, out_mat3);
auto comp3 = cc.priv().m_lastCompiled;
EXPECT_EQ(&comp1.priv(), &comp2.priv());
EXPECT_EQ(&comp1.priv(), &comp3.priv());
cv::Mat cv_out_mat1, cv_out_mat2, cv_out_mat3;
cv::resize(in_mat1, cv_out_mat1, szOut);
cv::resize(in_mat2, cv_out_mat2, szOut);
cv::resize(in_mat3, cv_out_mat3, szOut);
// Fluid's and OpenCV's Resizes aren't bit exact.
// So 1 is here because it is max difference between them.
EXPECT_TRUE(Tolerance_FloatRel_IntAbs(1e-5, 1).to_compare_f()(out_mat1, cv_out_mat1));
EXPECT_TRUE(Tolerance_FloatRel_IntAbs(1e-5, 1).to_compare_f()(out_mat2, cv_out_mat2));
EXPECT_TRUE(Tolerance_FloatRel_IntAbs(1e-5, 1).to_compare_f()(out_mat3, cv_out_mat3));
}
TEST(GComputationCompile, ReshapeBlur)
{
cv::Size kernelSize{3, 3};
cv::GMat in;
cv::GComputation cc(in, cv::gapi::blur(in, kernelSize));
cv::Mat in_mat1( 8, 8, CV_8UC1);
cv::Mat in_mat2(16, 16, CV_8UC1);
cv::randu(in_mat1, cv::Scalar::all(0), cv::Scalar::all(255));
cv::randu(in_mat2, cv::Scalar::all(0), cv::Scalar::all(255));
cv::Mat out_mat1, out_mat2;
cc.apply(in_mat1, out_mat1, cv::compile_args(cv::gapi::imgproc::fluid::kernels()));
auto comp1 = cc.priv().m_lastCompiled;
cc.apply(in_mat2, out_mat2);
auto comp2 = cc.priv().m_lastCompiled;
// Both compiled objects are actually the same unique executable
EXPECT_EQ(&comp1.priv(), &comp2.priv());
cv::Mat cv_out_mat1, cv_out_mat2;
cv::blur(in_mat1, cv_out_mat1, kernelSize);
cv::blur(in_mat2, cv_out_mat2, kernelSize);
EXPECT_EQ(0, cvtest::norm(out_mat1, cv_out_mat1, NORM_INF));
EXPECT_EQ(0, cvtest::norm(out_mat2, cv_out_mat2, NORM_INF));
}
TEST(GComputationCompile, ReshapeRois)
{
cv::Size kernelSize{3, 3};
cv::Size szOut(8, 8);
cv::GMat in;
auto blurred = cv::gapi::blur(in, kernelSize);
cv::GComputation cc(in, cv::gapi::resize(blurred, szOut));
cv::Mat first_in_mat(8, 8, CV_8UC3);
cv::randn(first_in_mat, cv::Scalar::all(127), cv::Scalar::all(40.f));
cv::Mat first_out_mat;
auto fluidKernels = cv::gapi::combine(gapi::imgproc::fluid::kernels(),
gapi::core::fluid::kernels());
cc.apply(first_in_mat, first_out_mat, cv::compile_args(fluidKernels));
auto first_comp = cc.priv().m_lastCompiled;
constexpr int niter = 4;
for (int i = 0; i < niter; i++)
{
int width = 4 + 2*i;
int height = width;
cv::Mat in_mat(width, height, CV_8UC3);
cv::randn(in_mat, cv::Scalar::all(127), cv::Scalar::all(40.f));
cv::Mat out_mat = cv::Mat::zeros(szOut, CV_8UC3);
int x = 0;
int y = szOut.height * i / niter;
int roiW = szOut.width;
int roiH = szOut.height / niter;
cv::Rect roi{x, y, roiW, roiH};
cc.apply(in_mat, out_mat, cv::compile_args(cv::GFluidOutputRois{{roi}}));
auto comp = cc.priv().m_lastCompiled;
EXPECT_EQ(&first_comp.priv(), &comp.priv());
cv::Mat blur_mat, cv_out_mat;
cv::blur(in_mat, blur_mat, kernelSize);
cv::resize(blur_mat, cv_out_mat, szOut);
// Fluid's and OpenCV's resizes aren't bit exact.
// So 1 is here because it is max difference between them.
EXPECT_TRUE(Tolerance_FloatRel_IntAbs(1e-5, 1).to_compare_f()(out_mat(roi), cv_out_mat(roi)));
}
}
} // opencv_test
|