1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
|
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2018 Intel Corporation
#include "../test_precomp.hpp"
namespace opencv_test
{
typedef ::testing::Types<int, cv::Point, cv::Rect> VectorRef_Test_Types;
template<typename T> struct VectorRefT: public ::testing::Test { using Type = T; };
TYPED_TEST_CASE(VectorRefT, VectorRef_Test_Types);
TYPED_TEST(VectorRefT, Reset_Valid)
{
using T = typename TestFixture::Type;
cv::detail::VectorRefT<T> ref; // vector ref created empty
EXPECT_NO_THROW(ref.reset()); // 1st reset is OK (initializes)
EXPECT_NO_THROW(ref.reset()); // 2nd reset is also OK (resets)
}
TYPED_TEST(VectorRefT, Reset_Invalid)
{
using T = typename TestFixture::Type;
std::vector<T> vec(42); // create a std::vector of 42 elements
cv::detail::VectorRefT<T> ref(vec); // RO_EXT (since reference is const)
EXPECT_ANY_THROW(ref.reset()); // data-bound vector ref can't be reset
}
TYPED_TEST(VectorRefT, ReadRef_External)
{
using T = typename TestFixture::Type;
const std::vector<T> vec(42); // create a std::vector of 42 elements
cv::detail::VectorRefT<T> ref(vec); // RO_EXT (since reference is const)
auto &vref = ref.rref();
EXPECT_EQ(vec.data(), vref.data());
EXPECT_EQ(vec.size(), vref.size());
}
TYPED_TEST(VectorRefT, ReadRef_Internal)
{
using T = typename TestFixture::Type;
cv::detail::VectorRefT<T> ref;
ref.reset(); // RW_OWN (reset on empty ref)
auto &vref = ref.rref(); // read access is valid for RW_OWN
EXPECT_EQ(0u, vref.size()); // by default vector is empty
}
TYPED_TEST(VectorRefT, WriteRef_External)
{
using T = typename TestFixture::Type;
std::vector<T> vec(42); // create a std::vector of 42 elements
cv::detail::VectorRefT<T> ref(vec); // RW_EXT (since reference is not const)
auto &vref = ref.wref(); // write access is valid with RW_EXT
EXPECT_EQ(vec.data(), vref.data());
EXPECT_EQ(vec.size(), vref.size());
}
TYPED_TEST(VectorRefT, WriteRef_Internal)
{
using T = typename TestFixture::Type;
cv::detail::VectorRefT<T> ref;
ref.reset(); // RW_OWN (reset on empty ref)
auto &vref = ref.wref(); // write access is valid for RW_OWN
EXPECT_EQ(0u, vref.size()); // empty vector by default
}
TYPED_TEST(VectorRefT, WriteToRO)
{
using T = typename TestFixture::Type;
const std::vector<T> vec(42); // create a std::vector of 42 elements
cv::detail::VectorRefT<T> ref(vec); // RO_EXT (since reference is const)
EXPECT_ANY_THROW(ref.wref());
}
TYPED_TEST(VectorRefT, ReadAfterWrite)
{
using T = typename TestFixture::Type;
std::vector<T> vec; // Initial data holder (empty vector)
cv::detail::VectorRefT<T> writer(vec); // RW_EXT
const auto& ro_ref = vec;
cv::detail::VectorRefT<T> reader(ro_ref); // RO_EXT
EXPECT_EQ(0u, writer.wref().size()); // Check the initial state
EXPECT_EQ(0u, reader.rref().size());
writer.wref().emplace_back(); // Check that write is successful
EXPECT_EQ(1u, writer.wref().size());
EXPECT_EQ(1u, vec.size()); // Check that changes are reflected to the original container
EXPECT_EQ(1u, reader.rref().size()); // Check that changes are reflected to reader's view
EXPECT_EQ(T(), vec.at(0)); // Check the value (must be default-initialized)
EXPECT_EQ(T(), reader.rref().at(0));
EXPECT_EQ(T(), writer.wref().at(0));
}
template<typename T> struct VectorRefU: public ::testing::Test { using Type = T; };
TYPED_TEST_CASE(VectorRefU, VectorRef_Test_Types);
template<class T> struct custom_struct { T a; T b; };
TYPED_TEST(VectorRefU, Reset_Valid)
{
using T = typename TestFixture::Type;
cv::detail::VectorRef ref; // vector ref created empty
EXPECT_NO_THROW(ref.reset<T>()); // 1st reset is OK (initializes)
EXPECT_NO_THROW(ref.reset<T>()); // 2nd reset is also OK (resets)
EXPECT_ANY_THROW(ref.reset<custom_struct<T> >()); // type change is not allowed
}
TYPED_TEST(VectorRefU, Reset_Invalid)
{
using T = typename TestFixture::Type;
std::vector<T> vec(42); // create a std::vector of 42 elements
cv::detail::VectorRef ref(vec); // RO_EXT (since reference is const)
EXPECT_ANY_THROW(ref.reset<T>()); // data-bound vector ref can't be reset
}
TYPED_TEST(VectorRefU, ReadRef_External)
{
using T = typename TestFixture::Type;
const std::vector<T> vec(42); // create a std::vector of 42 elements
cv::detail::VectorRef ref(vec); // RO_EXT (since reference is const)
auto &vref = ref.rref<T>();
EXPECT_EQ(vec.data(), vref.data());
EXPECT_EQ(vec.size(), vref.size());
}
TYPED_TEST(VectorRefU, ReadRef_Internal)
{
using T = typename TestFixture::Type;
cv::detail::VectorRef ref;
ref.reset<T>(); // RW_OWN (reset on empty ref)
auto &vref = ref.rref<T>(); // read access is valid for RW_OWN
EXPECT_EQ(0u, vref.size()); // by default vector is empty
}
TYPED_TEST(VectorRefU, WriteRef_External)
{
using T = typename TestFixture::Type;
std::vector<T> vec(42); // create a std::vector of 42 elements
cv::detail::VectorRef ref(vec); // RW_EXT (since reference is not const)
auto &vref = ref.wref<T>(); // write access is valid with RW_EXT
EXPECT_EQ(vec.data(), vref.data());
EXPECT_EQ(vec.size(), vref.size());
}
TYPED_TEST(VectorRefU, WriteRef_Internal)
{
using T = typename TestFixture::Type;
cv::detail::VectorRef ref;
ref.reset<T>(); // RW_OWN (reset on empty ref)
auto &vref = ref.wref<T>(); // write access is valid for RW_OWN
EXPECT_EQ(0u, vref.size()); // empty vector by default
}
TYPED_TEST(VectorRefU, WriteToRO)
{
using T = typename TestFixture::Type;
const std::vector<T> vec(42); // create a std::vector of 42 elements
cv::detail::VectorRef ref(vec); // RO_EXT (since reference is const)
EXPECT_ANY_THROW(ref.wref<T>());
}
TYPED_TEST(VectorRefU, ReadAfterWrite)
{
using T = typename TestFixture::Type;
std::vector<T> vec; // Initial data holder (empty vector)
cv::detail::VectorRef writer(vec); // RW_EXT
const auto& ro_ref = vec;
cv::detail::VectorRef reader(ro_ref); // RO_EXT
EXPECT_EQ(0u, writer.wref<T>().size()); // Check the initial state
EXPECT_EQ(0u, reader.rref<T>().size());
writer.wref<T>().emplace_back(); // Check that write is successful
EXPECT_EQ(1u, writer.wref<T>().size());
EXPECT_EQ(1u, vec.size()); // Check that changes are reflected to the original container
EXPECT_EQ(1u, reader.rref<T>().size()); // Check that changes are reflected to reader's view
EXPECT_EQ(T(), vec.at(0)); // Check the value (must be default-initialized)
EXPECT_EQ(T(), reader.rref<T>().at(0));
EXPECT_EQ(T(), writer.wref<T>().at(0));
}
TEST(VectorRefU, TypeCheck)
{
cv::detail::VectorRef ref;
ref.reset<int>(); // RW_OWN
EXPECT_ANY_THROW(ref.reset<char>());
EXPECT_ANY_THROW(ref.rref<char>());
EXPECT_ANY_THROW(ref.wref<char>());
}
} // namespace opencv_test
|