File: gapi_streaming_utils_test.cpp

package info (click to toggle)
opencv 4.10.0%2Bdfsg-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 282,092 kB
  • sloc: cpp: 1,178,079; xml: 682,621; python: 49,092; lisp: 31,150; java: 25,469; ansic: 11,039; javascript: 6,085; sh: 1,214; cs: 601; perl: 494; objc: 210; makefile: 173
file content (349 lines) | stat: -rw-r--r-- 9,580 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2021 Intel Corporation


#include "../test_precomp.hpp"

#include "../common/gapi_streaming_tests_common.hpp"

#include <chrono>
#include <future>

#define private public
#include "streaming/onevpl/accelerators/utils/shared_lock.hpp"
#undef private

#include "streaming/onevpl/accelerators/utils/elastic_barrier.hpp"

namespace opencv_test
{
namespace
{
using cv::gapi::wip::onevpl::SharedLock;

struct TestBarrier : public cv::gapi::wip::onevpl::elastic_barrier<TestBarrier> {
    void on_first_in_impl(size_t visitor_id) {

        static std::atomic<int> thread_counter{};
        thread_counter++;
        EXPECT_EQ(thread_counter.load(), 1);

        visitors_in.insert(visitor_id);
        last_visitor_id = visitor_id;

        thread_counter--;
        EXPECT_EQ(thread_counter.load(), 0);
    }

    void on_last_out_impl(size_t visitor_id) {

        static std::atomic<int> thread_counter{};
        thread_counter++;
        EXPECT_EQ(thread_counter.load(), 1);

        visitors_out.insert(visitor_id);
        last_visitor_id = visitor_id;

        thread_counter--;
        EXPECT_EQ(thread_counter.load(), 0);
    }

    size_t last_visitor_id = 0;
    std::set<size_t> visitors_in;
    std::set<size_t> visitors_out;
};

TEST(OneVPL_SharedLock, Create) {
    SharedLock lock;
    EXPECT_EQ(lock.shared_counter.load(), size_t{0});
}

TEST(OneVPL_SharedLock, Read_SingleThread)
{
    SharedLock lock;

    const size_t single_thread_read_count = 100;
    for(size_t i = 0; i < single_thread_read_count; i++) {
        lock.shared_lock();
        EXPECT_FALSE(lock.owns());
    }
    EXPECT_EQ(lock.shared_counter.load(), single_thread_read_count);

    for(size_t i = 0; i < single_thread_read_count; i++) {
        lock.unlock_shared();
        EXPECT_FALSE(lock.owns());
    }

    EXPECT_EQ(lock.shared_counter.load(), size_t{0});
}

TEST(OneVPL_SharedLock, TryLock_SingleThread)
{
    SharedLock lock;

    EXPECT_TRUE(lock.try_lock());
    EXPECT_TRUE(lock.owns());

    lock.unlock();
    EXPECT_FALSE(lock.owns());
    EXPECT_EQ(lock.shared_counter.load(), size_t{0});
}

TEST(OneVPL_SharedLock, Write_SingleThread)
{
    SharedLock lock;

    lock.lock();
    EXPECT_TRUE(lock.owns());

    lock.unlock();
    EXPECT_FALSE(lock.owns());
    EXPECT_EQ(lock.shared_counter.load(), size_t{0});
}

TEST(OneVPL_SharedLock, TryLockTryLock_SingleThread)
{
    SharedLock lock;

    lock.try_lock();
    EXPECT_FALSE(lock.try_lock());
    lock.unlock();

    EXPECT_FALSE(lock.owns());
}

TEST(OneVPL_SharedLock, ReadTryLock_SingleThread)
{
    SharedLock lock;

    lock.shared_lock();
    EXPECT_FALSE(lock.owns());
    EXPECT_FALSE(lock.try_lock());
    lock.unlock_shared();

    EXPECT_TRUE(lock.try_lock());
    EXPECT_TRUE(lock.owns());
    lock.unlock();
}

TEST(OneVPL_SharedLock, WriteTryLock_SingleThread)
{
    SharedLock lock;

    lock.lock();
    EXPECT_TRUE(lock.owns());
    EXPECT_FALSE(lock.try_lock());
    lock.unlock();

    EXPECT_TRUE(lock.try_lock());
    EXPECT_TRUE(lock.owns());
    lock.unlock();
}


TEST(OneVPL_SharedLock, Write_MultiThread)
{
    SharedLock lock;

    std::promise<void> barrier;
    std::shared_future<void> sync = barrier.get_future();

    static const size_t inc_count = 10000000;
    size_t shared_value = 0;
    auto work = [&lock, &shared_value](size_t count) {
        for (size_t i = 0; i < count; i ++) {
            lock.lock();
            shared_value ++;
            lock.unlock();
        }
    };

    std::thread worker_thread([&barrier, sync, work] () {

        std::thread sub_worker([&barrier, work] () {
            barrier.set_value();
            work(inc_count);
        });

        sync.wait();
        work(inc_count);
        sub_worker.join();
    });
    sync.wait();

    work(inc_count);
    worker_thread.join();

    EXPECT_EQ(shared_value, inc_count * 3);
}

TEST(OneVPL_SharedLock, ReadWrite_MultiThread)
{
    SharedLock lock;

    std::promise<void> barrier;
    std::future<void> sync = barrier.get_future();

    static const size_t inc_count = 10000000;
    size_t shared_value = 0;
    auto write_work = [&lock, &shared_value](size_t count) {
        for (size_t i = 0; i < count; i ++) {
            lock.lock();
            shared_value ++;
            lock.unlock();
        }
    };

    auto read_work = [&lock, &shared_value](size_t count) {

        auto old_shared_value = shared_value;
        for (size_t i = 0; i < count; i ++) {
            lock.shared_lock();
            EXPECT_TRUE(shared_value >= old_shared_value);
            old_shared_value = shared_value;
            lock.unlock_shared();
        }
    };

    std::thread writer_thread([&barrier, write_work] () {
        barrier.set_value();
        write_work(inc_count);
    });
    sync.wait();

    read_work(inc_count);
    writer_thread.join();

    EXPECT_EQ(shared_value, inc_count);
}


TEST(OneVPL_ElasticBarrier, single_thread_visit)
{
    TestBarrier barrier;

    const size_t max_visit_count = 10000;
    size_t visit_id = 0;
    for (visit_id = 0; visit_id < max_visit_count; visit_id++) {
        barrier.visit_in(visit_id);
        EXPECT_EQ(barrier.visitors_in.size(), size_t{1});
    }
    EXPECT_EQ(barrier.last_visitor_id, size_t{0});
    EXPECT_EQ(barrier.visitors_out.size(), size_t{0});

    for (visit_id = 0; visit_id < max_visit_count; visit_id++) {
        barrier.visit_out(visit_id);
        EXPECT_EQ(barrier.visitors_in.size(), size_t{1});
    }
    EXPECT_EQ(barrier.last_visitor_id, visit_id - 1);
    EXPECT_EQ(barrier.visitors_out.size(), size_t{1});
}


TEST(OneVPL_ElasticBarrier, multi_thread_visit)
{
    applyTestTag(CV_TEST_TAG_VERYLONG);
    TestBarrier tested_barrier;

    static const size_t max_visit_count = 10000000;
    std::atomic<size_t> visit_in_wait_counter{};
    std::promise<void> start_sync_barrier;
    std::shared_future<void> start_sync = start_sync_barrier.get_future();
    std::promise<void> phase_sync_barrier;
    std::shared_future<void> phase_sync = phase_sync_barrier.get_future();

    auto visit_worker_job = [&tested_barrier,
                             &visit_in_wait_counter,
                             start_sync,
                             phase_sync] (size_t worker_id) {

        start_sync.wait();

        // first phase
        const size_t begin_range = worker_id * max_visit_count;
        const size_t end_range = (worker_id + 1) * max_visit_count;
        for (size_t visit_id = begin_range; visit_id < end_range; visit_id++) {
            tested_barrier.visit_in(visit_id);
        }

        // notify all worker first phase ready
        visit_in_wait_counter.fetch_add(1);

        // wait main second phase
        phase_sync.wait();

        // second phase
        for (size_t visit_id = begin_range; visit_id < end_range; visit_id++) {
            tested_barrier.visit_out(visit_id);
        }
    };

    auto visit_main_job = [&tested_barrier,
                           &visit_in_wait_counter,
                           &phase_sync_barrier] (size_t total_workers_count,
                                                 size_t worker_id) {

        const size_t begin_range = worker_id * max_visit_count;
        const size_t end_range = (worker_id + 1) * max_visit_count;
        for (size_t visit_id = begin_range; visit_id < end_range; visit_id++) {
            tested_barrier.visit_in(visit_id);
        }

        // wait all workers first phase done
        visit_in_wait_counter.fetch_add(1);
        while (visit_in_wait_counter.load() != total_workers_count) {
            std::this_thread::yield();
        };

        // TEST invariant: last_visitor_id MUST be one from any FIRST worker visitor_id
        bool one_of_available_ids_matched = false;
        for (size_t id = 0; id < total_workers_count; id ++) {
            size_t expected_last_visitor_for_id = id * max_visit_count;
            one_of_available_ids_matched |=
                    (tested_barrier.last_visitor_id == expected_last_visitor_for_id) ;
        }
        EXPECT_TRUE(one_of_available_ids_matched);

        // unblock all workers to work out second phase
        phase_sync_barrier.set_value();

        // continue second phase
        for (size_t visit_id = begin_range; visit_id < end_range; visit_id++) {
            tested_barrier.visit_out(visit_id);
        }
    };

    size_t max_worker_count = std::thread::hardware_concurrency();
    if (max_worker_count < 2) {
        max_worker_count = 2; // logical 2 threads required at least
    }
    std::vector<std::thread> workers;
    workers.reserve(max_worker_count);
    for (size_t worker_id = 1; worker_id < max_worker_count; worker_id++) {
        workers.emplace_back(visit_worker_job, worker_id);
    }

    // let's go for first phase
    start_sync_barrier.set_value();

    // utilize main thread as well
    visit_main_job(max_worker_count, 0);

    // join all threads second phase
    for (auto& w : workers) {
        w.join();
    }

    // TEST invariant: last_visitor_id MUST be one from any LATTER worker visitor_id
    bool one_of_available_ids_matched = false;
    for (size_t id = 0; id < max_worker_count; id ++) {
        one_of_available_ids_matched |=
                (tested_barrier.last_visitor_id == ((id + 1) * max_visit_count - 1)) ;
    }
    EXPECT_TRUE(one_of_available_ids_matched);
}
}
} // opencv_test