1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
|
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2021 Intel Corporation
#include "../test_precomp.hpp"
#include "../common/gapi_streaming_tests_common.hpp"
#include <chrono>
#include <future>
#define private public
#include "streaming/onevpl/accelerators/utils/shared_lock.hpp"
#undef private
#include "streaming/onevpl/accelerators/utils/elastic_barrier.hpp"
namespace opencv_test
{
namespace
{
using cv::gapi::wip::onevpl::SharedLock;
struct TestBarrier : public cv::gapi::wip::onevpl::elastic_barrier<TestBarrier> {
void on_first_in_impl(size_t visitor_id) {
static std::atomic<int> thread_counter{};
thread_counter++;
EXPECT_EQ(thread_counter.load(), 1);
visitors_in.insert(visitor_id);
last_visitor_id = visitor_id;
thread_counter--;
EXPECT_EQ(thread_counter.load(), 0);
}
void on_last_out_impl(size_t visitor_id) {
static std::atomic<int> thread_counter{};
thread_counter++;
EXPECT_EQ(thread_counter.load(), 1);
visitors_out.insert(visitor_id);
last_visitor_id = visitor_id;
thread_counter--;
EXPECT_EQ(thread_counter.load(), 0);
}
size_t last_visitor_id = 0;
std::set<size_t> visitors_in;
std::set<size_t> visitors_out;
};
TEST(OneVPL_SharedLock, Create) {
SharedLock lock;
EXPECT_EQ(lock.shared_counter.load(), size_t{0});
}
TEST(OneVPL_SharedLock, Read_SingleThread)
{
SharedLock lock;
const size_t single_thread_read_count = 100;
for(size_t i = 0; i < single_thread_read_count; i++) {
lock.shared_lock();
EXPECT_FALSE(lock.owns());
}
EXPECT_EQ(lock.shared_counter.load(), single_thread_read_count);
for(size_t i = 0; i < single_thread_read_count; i++) {
lock.unlock_shared();
EXPECT_FALSE(lock.owns());
}
EXPECT_EQ(lock.shared_counter.load(), size_t{0});
}
TEST(OneVPL_SharedLock, TryLock_SingleThread)
{
SharedLock lock;
EXPECT_TRUE(lock.try_lock());
EXPECT_TRUE(lock.owns());
lock.unlock();
EXPECT_FALSE(lock.owns());
EXPECT_EQ(lock.shared_counter.load(), size_t{0});
}
TEST(OneVPL_SharedLock, Write_SingleThread)
{
SharedLock lock;
lock.lock();
EXPECT_TRUE(lock.owns());
lock.unlock();
EXPECT_FALSE(lock.owns());
EXPECT_EQ(lock.shared_counter.load(), size_t{0});
}
TEST(OneVPL_SharedLock, TryLockTryLock_SingleThread)
{
SharedLock lock;
lock.try_lock();
EXPECT_FALSE(lock.try_lock());
lock.unlock();
EXPECT_FALSE(lock.owns());
}
TEST(OneVPL_SharedLock, ReadTryLock_SingleThread)
{
SharedLock lock;
lock.shared_lock();
EXPECT_FALSE(lock.owns());
EXPECT_FALSE(lock.try_lock());
lock.unlock_shared();
EXPECT_TRUE(lock.try_lock());
EXPECT_TRUE(lock.owns());
lock.unlock();
}
TEST(OneVPL_SharedLock, WriteTryLock_SingleThread)
{
SharedLock lock;
lock.lock();
EXPECT_TRUE(lock.owns());
EXPECT_FALSE(lock.try_lock());
lock.unlock();
EXPECT_TRUE(lock.try_lock());
EXPECT_TRUE(lock.owns());
lock.unlock();
}
TEST(OneVPL_SharedLock, Write_MultiThread)
{
SharedLock lock;
std::promise<void> barrier;
std::shared_future<void> sync = barrier.get_future();
static const size_t inc_count = 10000000;
size_t shared_value = 0;
auto work = [&lock, &shared_value](size_t count) {
for (size_t i = 0; i < count; i ++) {
lock.lock();
shared_value ++;
lock.unlock();
}
};
std::thread worker_thread([&barrier, sync, work] () {
std::thread sub_worker([&barrier, work] () {
barrier.set_value();
work(inc_count);
});
sync.wait();
work(inc_count);
sub_worker.join();
});
sync.wait();
work(inc_count);
worker_thread.join();
EXPECT_EQ(shared_value, inc_count * 3);
}
TEST(OneVPL_SharedLock, ReadWrite_MultiThread)
{
SharedLock lock;
std::promise<void> barrier;
std::future<void> sync = barrier.get_future();
static const size_t inc_count = 10000000;
size_t shared_value = 0;
auto write_work = [&lock, &shared_value](size_t count) {
for (size_t i = 0; i < count; i ++) {
lock.lock();
shared_value ++;
lock.unlock();
}
};
auto read_work = [&lock, &shared_value](size_t count) {
auto old_shared_value = shared_value;
for (size_t i = 0; i < count; i ++) {
lock.shared_lock();
EXPECT_TRUE(shared_value >= old_shared_value);
old_shared_value = shared_value;
lock.unlock_shared();
}
};
std::thread writer_thread([&barrier, write_work] () {
barrier.set_value();
write_work(inc_count);
});
sync.wait();
read_work(inc_count);
writer_thread.join();
EXPECT_EQ(shared_value, inc_count);
}
TEST(OneVPL_ElasticBarrier, single_thread_visit)
{
TestBarrier barrier;
const size_t max_visit_count = 10000;
size_t visit_id = 0;
for (visit_id = 0; visit_id < max_visit_count; visit_id++) {
barrier.visit_in(visit_id);
EXPECT_EQ(barrier.visitors_in.size(), size_t{1});
}
EXPECT_EQ(barrier.last_visitor_id, size_t{0});
EXPECT_EQ(barrier.visitors_out.size(), size_t{0});
for (visit_id = 0; visit_id < max_visit_count; visit_id++) {
barrier.visit_out(visit_id);
EXPECT_EQ(barrier.visitors_in.size(), size_t{1});
}
EXPECT_EQ(barrier.last_visitor_id, visit_id - 1);
EXPECT_EQ(barrier.visitors_out.size(), size_t{1});
}
TEST(OneVPL_ElasticBarrier, multi_thread_visit)
{
applyTestTag(CV_TEST_TAG_VERYLONG);
TestBarrier tested_barrier;
static const size_t max_visit_count = 10000000;
std::atomic<size_t> visit_in_wait_counter{};
std::promise<void> start_sync_barrier;
std::shared_future<void> start_sync = start_sync_barrier.get_future();
std::promise<void> phase_sync_barrier;
std::shared_future<void> phase_sync = phase_sync_barrier.get_future();
auto visit_worker_job = [&tested_barrier,
&visit_in_wait_counter,
start_sync,
phase_sync] (size_t worker_id) {
start_sync.wait();
// first phase
const size_t begin_range = worker_id * max_visit_count;
const size_t end_range = (worker_id + 1) * max_visit_count;
for (size_t visit_id = begin_range; visit_id < end_range; visit_id++) {
tested_barrier.visit_in(visit_id);
}
// notify all worker first phase ready
visit_in_wait_counter.fetch_add(1);
// wait main second phase
phase_sync.wait();
// second phase
for (size_t visit_id = begin_range; visit_id < end_range; visit_id++) {
tested_barrier.visit_out(visit_id);
}
};
auto visit_main_job = [&tested_barrier,
&visit_in_wait_counter,
&phase_sync_barrier] (size_t total_workers_count,
size_t worker_id) {
const size_t begin_range = worker_id * max_visit_count;
const size_t end_range = (worker_id + 1) * max_visit_count;
for (size_t visit_id = begin_range; visit_id < end_range; visit_id++) {
tested_barrier.visit_in(visit_id);
}
// wait all workers first phase done
visit_in_wait_counter.fetch_add(1);
while (visit_in_wait_counter.load() != total_workers_count) {
std::this_thread::yield();
};
// TEST invariant: last_visitor_id MUST be one from any FIRST worker visitor_id
bool one_of_available_ids_matched = false;
for (size_t id = 0; id < total_workers_count; id ++) {
size_t expected_last_visitor_for_id = id * max_visit_count;
one_of_available_ids_matched |=
(tested_barrier.last_visitor_id == expected_last_visitor_for_id) ;
}
EXPECT_TRUE(one_of_available_ids_matched);
// unblock all workers to work out second phase
phase_sync_barrier.set_value();
// continue second phase
for (size_t visit_id = begin_range; visit_id < end_range; visit_id++) {
tested_barrier.visit_out(visit_id);
}
};
size_t max_worker_count = std::thread::hardware_concurrency();
if (max_worker_count < 2) {
max_worker_count = 2; // logical 2 threads required at least
}
std::vector<std::thread> workers;
workers.reserve(max_worker_count);
for (size_t worker_id = 1; worker_id < max_worker_count; worker_id++) {
workers.emplace_back(visit_worker_job, worker_id);
}
// let's go for first phase
start_sync_barrier.set_value();
// utilize main thread as well
visit_main_job(max_worker_count, 0);
// join all threads second phase
for (auto& w : workers) {
w.join();
}
// TEST invariant: last_visitor_id MUST be one from any LATTER worker visitor_id
bool one_of_available_ids_matched = false;
for (size_t id = 0; id < max_worker_count; id ++) {
one_of_available_ids_matched |=
(tested_barrier.last_visitor_id == ((id + 1) * max_visit_count - 1)) ;
}
EXPECT_TRUE(one_of_available_ids_matched);
}
}
} // opencv_test
|