1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
|
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "test_precomp.hpp"
namespace opencv_test { namespace {
CV_ENUM(EM_START_STEP, EM::START_AUTO_STEP, EM::START_M_STEP, EM::START_E_STEP)
CV_ENUM(EM_COV_MAT, EM::COV_MAT_GENERIC, EM::COV_MAT_DIAGONAL, EM::COV_MAT_SPHERICAL)
typedef testing::TestWithParam< tuple<EM_START_STEP, EM_COV_MAT> > ML_EM_Params;
TEST_P(ML_EM_Params, accuracy)
{
const int nclusters = 3;
const int sizesArr[] = { 500, 700, 800 };
const vector<int> sizes( sizesArr, sizesArr + sizeof(sizesArr) / sizeof(sizesArr[0]) );
const int pointsCount = sizesArr[0] + sizesArr[1] + sizesArr[2];
Mat means;
vector<Mat> covs;
defaultDistribs( means, covs, CV_64FC1 );
Mat trainData(pointsCount, 2, CV_64FC1 );
Mat trainLabels;
generateData( trainData, trainLabels, sizes, means, covs, CV_64FC1, CV_32SC1 );
Mat testData( pointsCount, 2, CV_64FC1 );
Mat testLabels;
generateData( testData, testLabels, sizes, means, covs, CV_64FC1, CV_32SC1 );
Mat probs(trainData.rows, nclusters, CV_64FC1, cv::Scalar(1));
Mat weights(1, nclusters, CV_64FC1, cv::Scalar(1));
TermCriteria termCrit(cv::TermCriteria::COUNT + cv::TermCriteria::EPS, 100, FLT_EPSILON);
int startStep = get<0>(GetParam());
int covMatType = get<1>(GetParam());
cv::Mat labels;
Ptr<EM> em = EM::create();
em->setClustersNumber(nclusters);
em->setCovarianceMatrixType(covMatType);
em->setTermCriteria(termCrit);
if( startStep == EM::START_AUTO_STEP )
em->trainEM( trainData, noArray(), labels, noArray() );
else if( startStep == EM::START_E_STEP )
em->trainE( trainData, means, covs, weights, noArray(), labels, noArray() );
else if( startStep == EM::START_M_STEP )
em->trainM( trainData, probs, noArray(), labels, noArray() );
{
SCOPED_TRACE("Train");
float err = 1000;
EXPECT_TRUE(calcErr( labels, trainLabels, sizes, err , false, false ));
EXPECT_LE(err, 0.008f);
}
{
SCOPED_TRACE("Test");
float err = 1000;
labels.create( testData.rows, 1, CV_32SC1 );
for( int i = 0; i < testData.rows; i++ )
{
Mat sample = testData.row(i);
Mat out_probs;
labels.at<int>(i) = static_cast<int>(em->predict2( sample, out_probs )[1]);
}
EXPECT_TRUE(calcErr( labels, testLabels, sizes, err, false, false ));
EXPECT_LE(err, 0.008f);
}
}
INSTANTIATE_TEST_CASE_P(/**/, ML_EM_Params,
testing::Combine(
testing::Values(EM::START_AUTO_STEP, EM::START_M_STEP, EM::START_E_STEP),
testing::Values(EM::COV_MAT_GENERIC, EM::COV_MAT_DIAGONAL, EM::COV_MAT_SPHERICAL)
));
//==================================================================================================
TEST(ML_EM, save_load)
{
const int nclusters = 2;
Mat_<double> samples(3, 1);
samples << 1., 2., 3.;
std::vector<double> firstResult;
string filename = cv::tempfile(".xml");
{
Mat labels;
Ptr<EM> em = EM::create();
em->setClustersNumber(nclusters);
em->trainEM(samples, noArray(), labels, noArray());
for( int i = 0; i < samples.rows; i++)
{
Vec2d res = em->predict2(samples.row(i), noArray());
firstResult.push_back(res[1]);
}
{
FileStorage fs = FileStorage(filename, FileStorage::WRITE);
ASSERT_NO_THROW(fs << "em" << "{");
ASSERT_NO_THROW(em->write(fs));
ASSERT_NO_THROW(fs << "}");
}
}
{
Ptr<EM> em;
ASSERT_NO_THROW(em = Algorithm::load<EM>(filename));
for( int i = 0; i < samples.rows; i++)
{
SCOPED_TRACE(i);
Vec2d res = em->predict2(samples.row(i), noArray());
EXPECT_DOUBLE_EQ(firstResult[i], res[1]);
}
}
remove(filename.c_str());
}
//==================================================================================================
TEST(ML_EM, classification)
{
// This test classifies spam by the following way:
// 1. estimates distributions of "spam" / "not spam"
// 2. predict classID using Bayes classifier for estimated distributions.
string dataFilename = findDataFile("spambase.data");
Ptr<TrainData> data = TrainData::loadFromCSV(dataFilename, 0);
ASSERT_FALSE(data.empty());
Mat samples = data->getSamples();
ASSERT_EQ(samples.cols, 57);
Mat responses = data->getResponses();
vector<int> trainSamplesMask(samples.rows, 0);
const int trainSamplesCount = (int)(0.5f * samples.rows);
const int testSamplesCount = samples.rows - trainSamplesCount;
for(int i = 0; i < trainSamplesCount; i++)
trainSamplesMask[i] = 1;
RNG &rng = cv::theRNG();
for(size_t i = 0; i < trainSamplesMask.size(); i++)
{
int i1 = rng(static_cast<unsigned>(trainSamplesMask.size()));
int i2 = rng(static_cast<unsigned>(trainSamplesMask.size()));
std::swap(trainSamplesMask[i1], trainSamplesMask[i2]);
}
Mat samples0, samples1;
for(int i = 0; i < samples.rows; i++)
{
if(trainSamplesMask[i])
{
Mat sample = samples.row(i);
int resp = (int)responses.at<float>(i);
if(resp == 0)
samples0.push_back(sample);
else
samples1.push_back(sample);
}
}
Ptr<EM> model0 = EM::create();
model0->setClustersNumber(3);
model0->trainEM(samples0, noArray(), noArray(), noArray());
Ptr<EM> model1 = EM::create();
model1->setClustersNumber(3);
model1->trainEM(samples1, noArray(), noArray(), noArray());
// confusion matrices
Mat_<int> trainCM(2, 2, 0);
Mat_<int> testCM(2, 2, 0);
const double lambda = 1.;
for(int i = 0; i < samples.rows; i++)
{
Mat sample = samples.row(i);
double sampleLogLikelihoods0 = model0->predict2(sample, noArray())[0];
double sampleLogLikelihoods1 = model1->predict2(sample, noArray())[0];
int classID = (sampleLogLikelihoods0 >= lambda * sampleLogLikelihoods1) ? 0 : 1;
int resp = (int)responses.at<float>(i);
EXPECT_TRUE(resp == 0 || resp == 1);
if(trainSamplesMask[i])
trainCM(resp, classID)++;
else
testCM(resp, classID)++;
}
EXPECT_LE((double)(trainCM(1,0) + trainCM(0,1)) / trainSamplesCount, 0.23);
EXPECT_LE((double)(testCM(1,0) + testCM(0,1)) / testSamplesCount, 0.26);
}
}} // namespace
|