1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
|
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "test_precomp.hpp"
namespace opencv_test { namespace {
static const int TEST_VALUE_LIMIT = 500;
enum
{
UNIFORM_SAME_SCALE,
UNIFORM_DIFFERENT_SCALES
};
CV_ENUM(SVMSGD_TYPE, UNIFORM_SAME_SCALE, UNIFORM_DIFFERENT_SCALES)
typedef std::vector< std::pair<float,float> > BorderList;
static void makeData(RNG &rng, int samplesCount, const Mat &weights, float shift, const BorderList & borders, Mat &samples, Mat & responses)
{
int featureCount = weights.cols;
samples.create(samplesCount, featureCount, CV_32FC1);
for (int featureIndex = 0; featureIndex < featureCount; featureIndex++)
rng.fill(samples.col(featureIndex), RNG::UNIFORM, borders[featureIndex].first, borders[featureIndex].second);
responses.create(samplesCount, 1, CV_32FC1);
for (int i = 0 ; i < samplesCount; i++)
{
double res = samples.row(i).dot(weights) + shift;
responses.at<float>(i) = res > 0 ? 1.f : -1.f;
}
}
//==================================================================================================
typedef tuple<SVMSGD_TYPE, int, double> ML_SVMSGD_Param;
typedef testing::TestWithParam<ML_SVMSGD_Param> ML_SVMSGD_Params;
TEST_P(ML_SVMSGD_Params, scale_and_features)
{
const int type = get<0>(GetParam());
const int featureCount = get<1>(GetParam());
const double precision = get<2>(GetParam());
RNG &rng = cv::theRNG();
Mat_<float> weights(1, featureCount);
rng.fill(weights, RNG::UNIFORM, -1, 1);
const float shift = static_cast<float>(rng.uniform(-featureCount, featureCount));
BorderList borders;
float lowerLimit = -TEST_VALUE_LIMIT;
float upperLimit = TEST_VALUE_LIMIT;
if (type == UNIFORM_SAME_SCALE)
{
for (int featureIndex = 0; featureIndex < featureCount; featureIndex++)
borders.push_back(std::pair<float,float>(lowerLimit, upperLimit));
}
else if (type == UNIFORM_DIFFERENT_SCALES)
{
for (int featureIndex = 0; featureIndex < featureCount; featureIndex++)
{
int crit = rng.uniform(0, 2);
if (crit > 0)
borders.push_back(std::pair<float,float>(lowerLimit, upperLimit));
else
borders.push_back(std::pair<float,float>(lowerLimit/1000, upperLimit/1000));
}
}
ASSERT_FALSE(borders.empty());
Mat trainSamples;
Mat trainResponses;
int trainSamplesCount = 10000;
makeData(rng, trainSamplesCount, weights, shift, borders, trainSamples, trainResponses);
ASSERT_EQ(trainResponses.type(), CV_32FC1);
Mat testSamples;
Mat testResponses;
int testSamplesCount = 100000;
makeData(rng, testSamplesCount, weights, shift, borders, testSamples, testResponses);
ASSERT_EQ(testResponses.type(), CV_32FC1);
Ptr<TrainData> data = TrainData::create(trainSamples, cv::ml::ROW_SAMPLE, trainResponses);
ASSERT_TRUE(data);
cv::Ptr<SVMSGD> svmsgd = SVMSGD::create();
ASSERT_TRUE(svmsgd);
svmsgd->train(data);
Mat responses;
svmsgd->predict(testSamples, responses);
ASSERT_EQ(responses.type(), CV_32FC1);
ASSERT_EQ(responses.rows, testSamplesCount);
int errCount = 0;
for (int i = 0; i < testSamplesCount; i++)
if (responses.at<float>(i) * testResponses.at<float>(i) < 0)
errCount++;
float err = (float)errCount / testSamplesCount;
EXPECT_LE(err, precision);
}
ML_SVMSGD_Param params_list[] = {
ML_SVMSGD_Param(UNIFORM_SAME_SCALE, 2, 0.01),
ML_SVMSGD_Param(UNIFORM_SAME_SCALE, 5, 0.01),
ML_SVMSGD_Param(UNIFORM_SAME_SCALE, 100, 0.02),
ML_SVMSGD_Param(UNIFORM_DIFFERENT_SCALES, 2, 0.01),
ML_SVMSGD_Param(UNIFORM_DIFFERENT_SCALES, 5, 0.01),
ML_SVMSGD_Param(UNIFORM_DIFFERENT_SCALES, 100, 0.01),
};
INSTANTIATE_TEST_CASE_P(/**/, ML_SVMSGD_Params, testing::ValuesIn(params_list));
//==================================================================================================
TEST(ML_SVMSGD, twoPoints)
{
Mat samples(2, 2, CV_32FC1);
samples.at<float>(0,0) = 0;
samples.at<float>(0,1) = 0;
samples.at<float>(1,0) = 1000;
samples.at<float>(1,1) = 1;
Mat responses(2, 1, CV_32FC1);
responses.at<float>(0) = -1;
responses.at<float>(1) = 1;
cv::Ptr<TrainData> trainData = TrainData::create(samples, cv::ml::ROW_SAMPLE, responses);
Mat realWeights(1, 2, CV_32FC1);
realWeights.at<float>(0) = 1000;
realWeights.at<float>(1) = 1;
float realShift = -500000.5;
float normRealWeights = static_cast<float>(cv::norm(realWeights)); // TODO cvtest
realWeights /= normRealWeights;
realShift /= normRealWeights;
cv::Ptr<SVMSGD> svmsgd = SVMSGD::create();
svmsgd->setOptimalParameters();
svmsgd->train( trainData );
Mat foundWeights = svmsgd->getWeights();
float foundShift = svmsgd->getShift();
float normFoundWeights = static_cast<float>(cv::norm(foundWeights)); // TODO cvtest
foundWeights /= normFoundWeights;
foundShift /= normFoundWeights;
EXPECT_LE(cv::norm(Mat(foundWeights - realWeights)), 0.001); // TODO cvtest
EXPECT_LE(std::abs((foundShift - realShift) / realShift), 0.05);
}
}} // namespace
|