File: test_objdetect_aruco.py

package info (click to toggle)
opencv 4.10.0%2Bdfsg-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 282,092 kB
  • sloc: cpp: 1,178,079; xml: 682,621; python: 49,092; lisp: 31,150; java: 25,469; ansic: 11,039; javascript: 6,085; sh: 1,214; cs: 601; perl: 494; objc: 210; makefile: 173
file content (462 lines) | stat: -rw-r--r-- 20,698 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
#!/usr/bin/env python

# Python 2/3 compatibility
from __future__ import print_function

import os, tempfile, numpy as np
from math import pi

import cv2 as cv

from tests_common import NewOpenCVTests

def getSyntheticRT(yaw, pitch, distance):
    rvec = np.zeros((3, 1), np.float64)
    tvec = np.zeros((3, 1), np.float64)

    rotPitch = np.array([[-pitch], [0], [0]])
    rotYaw = np.array([[0], [yaw], [0]])

    rvec, tvec = cv.composeRT(rotPitch, np.zeros((3, 1), np.float64),
                              rotYaw, np.zeros((3, 1), np.float64))[:2]

    tvec = np.array([[0], [0], [distance]])
    return rvec, tvec

# see test_aruco_utils.cpp
def projectMarker(img, board, markerIndex, cameraMatrix, rvec, tvec, markerBorder):
    markerSizePixels = 100
    markerImg = cv.aruco.generateImageMarker(board.getDictionary(), board.getIds()[markerIndex], markerSizePixels, borderBits=markerBorder)

    distCoeffs = np.zeros((5, 1), np.float64)
    maxCoord = board.getRightBottomCorner()
    objPoints = board.getObjPoints()[markerIndex]
    for i in range(len(objPoints)):
        objPoints[i][0] -= maxCoord[0] / 2
        objPoints[i][1] -= maxCoord[1] / 2
        objPoints[i][2] -= maxCoord[2] / 2

    corners, _ = cv.projectPoints(objPoints, rvec, tvec, cameraMatrix, distCoeffs)

    originalCorners = np.array([
        [0, 0],
        [markerSizePixels, 0],
        [markerSizePixels, markerSizePixels],
        [0, markerSizePixels],
    ], np.float32)

    transformation = cv.getPerspectiveTransform(originalCorners, corners)

    borderValue = 127
    aux = cv.warpPerspective(markerImg, transformation, img.shape, None, cv.INTER_NEAREST, cv.BORDER_CONSTANT, borderValue)

    assert(img.shape == aux.shape)
    mask = (aux == borderValue).astype(np.uint8)
    img = img * mask + aux * (1 - mask)
    return img

def projectChessboard(squaresX, squaresY, squareSize, imageSize, cameraMatrix, rvec, tvec):
    img = np.ones(imageSize, np.uint8) * 255
    distCoeffs = np.zeros((5, 1), np.float64)
    for y in range(squaresY):
        startY = y * squareSize
        for x in range(squaresX):
            if (y % 2 != x % 2):
                continue
            startX = x * squareSize

            squareCorners = np.array([[startX - squaresX*squareSize/2,
                                       startY - squaresY*squareSize/2,
                                       0]], np.float32)
            squareCorners = np.stack((squareCorners[0],
                                      squareCorners[0] + [squareSize, 0, 0],
                                      squareCorners[0] + [squareSize, squareSize, 0],
                                      squareCorners[0] + [0, squareSize, 0]))

            projectedCorners, _ = cv.projectPoints(squareCorners, rvec, tvec, cameraMatrix, distCoeffs)
            projectedCorners = projectedCorners.astype(np.int64)
            projectedCorners = projectedCorners.reshape(1, 4, 2)
            img = cv.fillPoly(img, [projectedCorners], 0)

    return img

def projectCharucoBoard(board, cameraMatrix, yaw, pitch, distance, imageSize, markerBorder):
    rvec, tvec = getSyntheticRT(yaw, pitch, distance)

    img = np.ones(imageSize, np.uint8) * 255
    for indexMarker in range(len(board.getIds())):
        img = projectMarker(img, board, indexMarker, cameraMatrix, rvec, tvec, markerBorder)

    chessboard = projectChessboard(board.getChessboardSize()[0], board.getChessboardSize()[1],
                                   board.getSquareLength(), imageSize, cameraMatrix, rvec, tvec)

    chessboard = (chessboard != 0).astype(np.uint8)
    img = img * chessboard
    return img, rvec, tvec

class aruco_objdetect_test(NewOpenCVTests):

    def test_board(self):
        p1 = np.array([[0, 0, 0], [0, 1, 0], [1, 1, 0], [1, 0, 0]], dtype=np.float32)
        p2 = np.array([[1, 0, 0], [1, 1, 0], [2, 1, 0], [2, 0, 0]], dtype=np.float32)
        objPoints = np.array([p1, p2])
        dictionary = cv.aruco.getPredefinedDictionary(cv.aruco.DICT_4X4_50)
        ids = np.array([0, 1])

        board = cv.aruco.Board(objPoints, dictionary, ids)
        np.testing.assert_array_equal(board.getIds().squeeze(), ids)
        np.testing.assert_array_equal(np.ravel(np.array(board.getObjPoints())), np.ravel(np.concatenate([p1, p2])))

    def test_idsAccessibility(self):

        ids = np.arange(17)
        rev_ids = ids[::-1]

        aruco_dict  = cv.aruco.getPredefinedDictionary(cv.aruco.DICT_5X5_250)
        board = cv.aruco.CharucoBoard((7, 5), 1, 0.5, aruco_dict)

        np.testing.assert_array_equal(board.getIds().squeeze(), ids)

        board = cv.aruco.CharucoBoard((7, 5), 1, 0.5, aruco_dict, rev_ids)
        np.testing.assert_array_equal(board.getIds().squeeze(), rev_ids)

        board = cv.aruco.CharucoBoard((7, 5), 1, 0.5, aruco_dict, ids)
        np.testing.assert_array_equal(board.getIds().squeeze(), ids)

    def test_identify(self):
        aruco_dict = cv.aruco.getPredefinedDictionary(cv.aruco.DICT_4X4_50)
        expected_idx = 9
        expected_rotation = 2
        bit_marker = np.array([[0, 1, 1, 0], [1, 0, 1, 0], [1, 1, 1, 1], [0, 0, 1, 1]], dtype=np.uint8)

        check, idx, rotation = aruco_dict.identify(bit_marker, 0)

        self.assertTrue(check, True)
        self.assertEqual(idx, expected_idx)
        self.assertEqual(rotation, expected_rotation)

    def test_getDistanceToId(self):
        aruco_dict = cv.aruco.getPredefinedDictionary(cv.aruco.DICT_4X4_50)
        idx = 7
        rotation = 3
        bit_marker = np.array([[0, 1, 0, 1], [0, 1, 1, 1], [1, 1, 0, 0], [0, 1, 0, 0]], dtype=np.uint8)
        dist = aruco_dict.getDistanceToId(bit_marker, idx)

        self.assertEqual(dist, 0)

    def test_aruco_detector(self):
        aruco_params = cv.aruco.DetectorParameters()
        aruco_dict = cv.aruco.getPredefinedDictionary(cv.aruco.DICT_4X4_250)
        aruco_detector = cv.aruco.ArucoDetector(aruco_dict, aruco_params)
        id = 2
        marker_size = 100
        offset = 10
        img_marker = cv.aruco.generateImageMarker(aruco_dict, id, marker_size, aruco_params.markerBorderBits)
        img_marker = np.pad(img_marker, pad_width=offset, mode='constant', constant_values=255)
        gold_corners = np.array([[offset, offset],[marker_size+offset-1.0,offset],
                                 [marker_size+offset-1.0,marker_size+offset-1.0],
                                 [offset, marker_size+offset-1.0]], dtype=np.float32)
        corners, ids, rejected = aruco_detector.detectMarkers(img_marker)

        self.assertEqual(1, len(ids))
        self.assertEqual(id, ids[0])
        for i in range(0, len(corners)):
            np.testing.assert_array_equal(gold_corners, corners[i].reshape(4, 2))

    def test_aruco_detector_refine(self):
        aruco_params = cv.aruco.DetectorParameters()
        aruco_dict = cv.aruco.getPredefinedDictionary(cv.aruco.DICT_4X4_250)
        aruco_detector = cv.aruco.ArucoDetector(aruco_dict, aruco_params)
        board_size = (3, 4)
        board = cv.aruco.GridBoard(board_size, 5.0, 1.0, aruco_dict)
        board_image = board.generateImage((board_size[0]*50, board_size[1]*50), marginSize=10)

        corners, ids, rejected = aruco_detector.detectMarkers(board_image)
        self.assertEqual(board_size[0]*board_size[1], len(ids))

        part_corners, part_ids, part_rejected = corners[:-1], ids[:-1], list(rejected)
        part_rejected.append(corners[-1])

        refine_corners, refine_ids, refine_rejected, recovered_ids = aruco_detector.refineDetectedMarkers(board_image, board, part_corners, part_ids, part_rejected)

        self.assertEqual(board_size[0] * board_size[1], len(refine_ids))
        self.assertEqual(1, len(recovered_ids))

        self.assertEqual(ids[-1], refine_ids[-1])
        self.assertEqual((1, 4, 2), refine_corners[0].shape)
        np.testing.assert_array_equal(corners, refine_corners)

    def test_charuco_refine(self):
        aruco_dict = cv.aruco.getPredefinedDictionary(cv.aruco.DICT_6X6_50)
        board_size = (3, 4)
        board = cv.aruco.CharucoBoard(board_size, 1., .7, aruco_dict)
        aruco_detector = cv.aruco.ArucoDetector(aruco_dict)
        charuco_detector = cv.aruco.CharucoDetector(board)
        cell_size = 100
        image = board.generateImage((cell_size*board_size[0], cell_size*board_size[1]))
        camera = np.array([[1, 0, 0.5],
                           [0, 1, 0.5],
                           [0, 0, 1]])
        dist = np.array([0, 0, 0, 0, 0], dtype=np.float32).reshape(1, -1)

        # generate gold corners of the ArUco markers for the test
        gold_corners = np.array(board.getObjPoints())[:, :, 0:2]*cell_size

        # detect corners
        markerCorners, markerIds, _ = aruco_detector.detectMarkers(image)

        # test refine
        rejected = [markerCorners[-1]]
        markerCorners, markerIds = markerCorners[:-1], markerIds[:-1]
        markerCorners, markerIds, _, _ = aruco_detector.refineDetectedMarkers(image, board, markerCorners, markerIds,
                                                                              rejected, cameraMatrix=camera, distCoeffs=dist)

        charucoCorners, charucoIds, _, _ = charuco_detector.detectBoard(image, markerCorners=markerCorners,
                                                                        markerIds=markerIds)
        self.assertEqual(len(charucoIds), 6)
        self.assertEqual(len(markerIds), 6)

        for i, id in enumerate(markerIds.reshape(-1)):
            np.testing.assert_allclose(gold_corners[id], markerCorners[i].reshape(4, 2), 0.01, 1.)

    def test_write_read_dictionary(self):
        try:
            aruco_dict = cv.aruco.getPredefinedDictionary(cv.aruco.DICT_5X5_50)
            markers_gold = aruco_dict.bytesList

            # write aruco_dict
            fd, filename = tempfile.mkstemp(prefix="opencv_python_aruco_dict_", suffix=".yml")
            os.close(fd)

            fs_write = cv.FileStorage(filename, cv.FileStorage_WRITE)
            aruco_dict.writeDictionary(fs_write)
            fs_write.release()

            # reset aruco_dict
            aruco_dict = cv.aruco.getPredefinedDictionary(cv.aruco.DICT_6X6_250)

            # read aruco_dict
            fs_read = cv.FileStorage(filename, cv.FileStorage_READ)
            aruco_dict.readDictionary(fs_read.root())
            fs_read.release()

            # check equal
            self.assertEqual(aruco_dict.markerSize, 5)
            self.assertEqual(aruco_dict.maxCorrectionBits, 3)
            np.testing.assert_array_equal(aruco_dict.bytesList, markers_gold)

        finally:
            if os.path.exists(filename):
                os.remove(filename)

    def test_charuco_detector(self):
        aruco_dict = cv.aruco.getPredefinedDictionary(cv.aruco.DICT_4X4_250)
        board_size = (3, 3)
        board = cv.aruco.CharucoBoard(board_size, 1.0, .8, aruco_dict)
        charuco_detector = cv.aruco.CharucoDetector(board)
        cell_size = 100

        image = board.generateImage((cell_size*board_size[0], cell_size*board_size[1]))

        list_gold_corners = []
        for i in range(1, board_size[0]):
            for j in range(1, board_size[1]):
                list_gold_corners.append((j*cell_size, i*cell_size))
        gold_corners = np.array(list_gold_corners, dtype=np.float32)

        charucoCorners, charucoIds, markerCorners, markerIds = charuco_detector.detectBoard(image)

        self.assertEqual(len(charucoIds), 4)
        for i in range(0, 4):
            self.assertEqual(charucoIds[i], i)
        np.testing.assert_allclose(gold_corners, charucoCorners.reshape(-1, 2), 0.01, 0.1)

    def test_detect_diamonds(self):
        aruco_dict = cv.aruco.getPredefinedDictionary(cv.aruco.DICT_6X6_250)
        board_size = (3, 3)
        board = cv.aruco.CharucoBoard(board_size, 1.0, .8, aruco_dict)
        charuco_detector = cv.aruco.CharucoDetector(board)
        cell_size = 120

        image = board.generateImage((cell_size*board_size[0], cell_size*board_size[1]))

        list_gold_corners = [(cell_size, cell_size), (2*cell_size, cell_size), (2*cell_size, 2*cell_size),
                             (cell_size, 2*cell_size)]
        gold_corners = np.array(list_gold_corners, dtype=np.float32)

        diamond_corners, diamond_ids, marker_corners, marker_ids = charuco_detector.detectDiamonds(image)

        self.assertEqual(diamond_ids.size, 4)
        self.assertEqual(marker_ids.size, 4)
        for i in range(0, 4):
            self.assertEqual(diamond_ids[0][0][i], i)
        np.testing.assert_allclose(gold_corners, np.array(diamond_corners, dtype=np.float32).reshape(-1, 2), 0.01, 0.1)

    # check no segfault when cameraMatrix or distCoeffs are not initialized
    def test_charuco_no_segfault_params(self):
        dictionary = cv.aruco.getPredefinedDictionary(cv.aruco.DICT_4X4_1000)
        board = cv.aruco.CharucoBoard((10, 10), 0.019, 0.015, dictionary)
        charuco_parameters = cv.aruco.CharucoParameters()
        detector = cv.aruco.CharucoDetector(board)
        detector.setCharucoParameters(charuco_parameters)

        self.assertIsNone(detector.getCharucoParameters().cameraMatrix)
        self.assertIsNone(detector.getCharucoParameters().distCoeffs)

    def test_charuco_no_segfault_params_constructor(self):
        dictionary = cv.aruco.getPredefinedDictionary(cv.aruco.DICT_4X4_1000)
        board = cv.aruco.CharucoBoard((10, 10), 0.019, 0.015, dictionary)
        charuco_parameters = cv.aruco.CharucoParameters()
        detector = cv.aruco.CharucoDetector(board, charucoParams=charuco_parameters)

        self.assertIsNone(detector.getCharucoParameters().cameraMatrix)
        self.assertIsNone(detector.getCharucoParameters().distCoeffs)

    # similar to C++ test CV_CharucoDetection.accuracy
    def test_charuco_detector_accuracy(self):
        iteration = 0
        cameraMatrix = np.eye(3, 3, dtype=np.float64)
        imgSize = (500, 500)
        params = cv.aruco.DetectorParameters()
        params.minDistanceToBorder = 3

        board = cv.aruco.CharucoBoard((4, 4), 0.03, 0.015, cv.aruco.getPredefinedDictionary(cv.aruco.DICT_6X6_250))
        detector = cv.aruco.CharucoDetector(board, detectorParams=params)

        cameraMatrix[0, 0] = cameraMatrix[1, 1] = 600
        cameraMatrix[0, 2] = imgSize[0] / 2
        cameraMatrix[1, 2] = imgSize[1] / 2

        # for different perspectives
        distCoeffs = np.zeros((5, 1), dtype=np.float64)
        for distance in [0.2, 0.4]:
            for yaw in range(-55, 51, 25):
                for pitch in range(-55, 51, 25):
                    markerBorder = iteration % 2 + 1
                    iteration += 1

                    # create synthetic image
                    img, rvec, tvec = projectCharucoBoard(board, cameraMatrix, yaw * pi / 180, pitch * pi / 180, distance, imgSize, markerBorder)

                    params.markerBorderBits = markerBorder
                    detector.setDetectorParameters(params)

                    if (iteration % 2 != 0):
                        charucoParameters = cv.aruco.CharucoParameters()
                        charucoParameters.cameraMatrix = cameraMatrix
                        charucoParameters.distCoeffs = distCoeffs
                        detector.setCharucoParameters(charucoParameters)

                    charucoCorners, charucoIds, corners, ids = detector.detectBoard(img)

                    self.assertGreater(len(ids), 0)

                    copyChessboardCorners = board.getChessboardCorners()
                    copyChessboardCorners -= np.array(board.getRightBottomCorner()) / 2

                    projectedCharucoCorners, _ = cv.projectPoints(copyChessboardCorners, rvec, tvec, cameraMatrix, distCoeffs)

                    if charucoIds is None:
                        self.assertEqual(iteration, 46)
                        continue

                    for i in range(len(charucoIds)):
                        currentId = charucoIds[i]
                        self.assertLess(currentId, len(board.getChessboardCorners()))

                        reprErr = cv.norm(charucoCorners[i] - projectedCharucoCorners[currentId])
                        self.assertLessEqual(reprErr, 5)

    def test_aruco_match_image_points(self):
        aruco_dict = cv.aruco.getPredefinedDictionary(cv.aruco.DICT_4X4_50)
        board_size = (3, 4)
        board = cv.aruco.GridBoard(board_size, 5.0, 1.0, aruco_dict)
        aruco_corners = np.array(board.getObjPoints())[:, :, :2]
        aruco_ids = board.getIds()
        obj_points, img_points = board.matchImagePoints(aruco_corners, aruco_ids)
        aruco_corners = aruco_corners.reshape(-1, 2)

        self.assertEqual(aruco_corners.shape[0], obj_points.shape[0])
        self.assertEqual(img_points.shape[0], obj_points.shape[0])
        self.assertEqual(2, img_points.shape[2])
        np.testing.assert_array_equal(aruco_corners, obj_points[:, :, :2].reshape(-1, 2))

    def test_charuco_match_image_points(self):
        aruco_dict = cv.aruco.getPredefinedDictionary(cv.aruco.DICT_4X4_50)
        board_size = (3, 4)
        board = cv.aruco.CharucoBoard(board_size, 5.0, 1.0, aruco_dict)
        chessboard_corners = np.array(board.getChessboardCorners())[:, :2]
        chessboard_ids = board.getIds()
        obj_points, img_points = board.matchImagePoints(chessboard_corners, chessboard_ids)

        self.assertEqual(chessboard_corners.shape[0], obj_points.shape[0])
        self.assertEqual(img_points.shape[0], obj_points.shape[0])
        self.assertEqual(2, img_points.shape[2])
        np.testing.assert_array_equal(chessboard_corners, obj_points[:, :, :2].reshape(-1, 2))

    def test_draw_detected_markers(self):
        detected_points = [[[10, 10], [50, 10], [50, 50], [10, 50]]]
        img = np.zeros((60, 60), dtype=np.uint8)

        # add extra dimension in Python to create Nx4 Mat with 2 channels
        points1 = np.array(detected_points).reshape(-1, 4, 1, 2)
        img = cv.aruco.drawDetectedMarkers(img, points1, borderColor=255)

        # check that the marker borders are painted
        contours, _ = cv.findContours(img, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE)
        self.assertEqual(len(contours), 1)
        self.assertEqual(img[10, 10], 255)
        self.assertEqual(img[50, 10], 255)
        self.assertEqual(img[50, 50], 255)
        self.assertEqual(img[10, 50], 255)

        # must throw Exception without extra dimension
        points2 = np.array(detected_points)
        with self.assertRaises(Exception):
            img = cv.aruco.drawDetectedMarkers(img, points2, borderColor=255)

    def test_draw_detected_charuco(self):
        detected_points = [[[10, 10], [50, 10], [50, 50], [10, 50]]]
        img = np.zeros((60, 60), dtype=np.uint8)

        # add extra dimension in Python to create Nx1 Mat with 2 channels
        points = np.array(detected_points).reshape(-1, 1, 2)
        img = cv.aruco.drawDetectedCornersCharuco(img, points, cornerColor=255)

        # check that the 4 charuco corners are painted
        contours, _ = cv.findContours(img, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE)
        self.assertEqual(len(contours), 4)
        for contour in contours:
            center_x = round(np.average(contour[:, 0, 0]))
            center_y = round(np.average(contour[:, 0, 1]))
            center = [center_x, center_y]
            self.assertTrue(center in detected_points[0])

        # must throw Exception without extra dimension
        points2 = np.array(detected_points)
        with self.assertRaises(Exception):
            img = cv.aruco.drawDetectedCornersCharuco(img, points2, borderColor=255)

    def test_draw_detected_diamonds(self):
        detected_points = [[[10, 10], [50, 10], [50, 50], [10, 50]]]
        img = np.zeros((60, 60), dtype=np.uint8)

        # add extra dimension in Python to create Nx4 Mat with 2 channels
        points = np.array(detected_points).reshape(-1, 4, 1, 2)
        img = cv.aruco.drawDetectedDiamonds(img, points, borderColor=255)

        # check that the diamonds borders are painted
        contours, _ = cv.findContours(img, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE)
        self.assertEqual(len(contours), 1)
        self.assertEqual(img[10, 10], 255)
        self.assertEqual(img[50, 10], 255)
        self.assertEqual(img[50, 50], 255)
        self.assertEqual(img[10, 50], 255)

        # must throw Exception without extra dimension
        points2 = np.array(detected_points)
        with self.assertRaises(Exception):
            img = cv.aruco.drawDetectedDiamonds(img, points2, borderColor=255)

if __name__ == '__main__':
    NewOpenCVTests.bootstrap()