File: test_boarddetection.cpp

package info (click to toggle)
opencv 4.10.0%2Bdfsg-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 282,092 kB
  • sloc: cpp: 1,178,079; xml: 682,621; python: 49,092; lisp: 31,150; java: 25,469; ansic: 11,039; javascript: 6,085; sh: 1,214; cs: 601; perl: 494; objc: 210; makefile: 173
file content (329 lines) | stat: -rw-r--r-- 12,790 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.


#include "test_precomp.hpp"
#include "test_aruco_utils.hpp"

namespace opencv_test { namespace {

enum class ArucoAlgParams
{
    USE_DEFAULT = 0,
    USE_ARUCO3 = 1
};

/**
 * @brief Check pose estimation of aruco board
 */
class CV_ArucoBoardPose : public cvtest::BaseTest {
    public:
    CV_ArucoBoardPose(ArucoAlgParams arucoAlgParams)
    {
        aruco::DetectorParameters params;
        aruco::Dictionary dictionary = aruco::getPredefinedDictionary(aruco::DICT_6X6_250);
        params.minDistanceToBorder = 3;
        if (arucoAlgParams == ArucoAlgParams::USE_ARUCO3) {
            params.useAruco3Detection = true;
            params.cornerRefinementMethod = (int)aruco::CORNER_REFINE_SUBPIX;
            params.minSideLengthCanonicalImg = 16;
            params.errorCorrectionRate = 0.8;
        }
        detector = aruco::ArucoDetector(dictionary, params);
    }

    protected:
    aruco::ArucoDetector detector;
    void run(int);
};


void CV_ArucoBoardPose::run(int) {
    int iter = 0;
    Mat cameraMatrix = Mat::eye(3, 3, CV_64FC1);
    Size imgSize(500, 500);
    cameraMatrix.at< double >(0, 0) = cameraMatrix.at< double >(1, 1) = 650;
    cameraMatrix.at< double >(0, 2) = imgSize.width / 2;
    cameraMatrix.at< double >(1, 2) = imgSize.height / 2;
    Mat distCoeffs(5, 1, CV_64FC1, Scalar::all(0));
    const int sizeX = 3, sizeY = 3;
    aruco::DetectorParameters detectorParameters = detector.getDetectorParameters();

    // for different perspectives
    for(double distance : {0.2, 0.35}) {
        for(int yaw = -55; yaw <= 50; yaw += 25) {
            for(int pitch = -55; pitch <= 50; pitch += 25) {
                vector<int> tmpIds;
                for(int i = 0; i < sizeX*sizeY; i++)
                    tmpIds.push_back((iter + int(i)) % 250);
                aruco::GridBoard gridboard(Size(sizeX, sizeY), 0.02f, 0.005f, detector.getDictionary(), tmpIds);
                int markerBorder = iter % 2 + 1;
                iter++;
                // create synthetic image
                Mat img = projectBoard(gridboard, cameraMatrix, deg2rad(yaw), deg2rad(pitch), distance,
                                       imgSize, markerBorder);
                vector<vector<Point2f> > corners;
                vector<int> ids;
                detectorParameters.markerBorderBits = markerBorder;
                detector.setDetectorParameters(detectorParameters);
                detector.detectMarkers(img, corners, ids);

                ASSERT_EQ(ids.size(), gridboard.getIds().size());

                // estimate pose
                Mat rvec, tvec;
                {
                    Mat objPoints, imgPoints; // get object and image points for the solvePnP function
                    gridboard.matchImagePoints(corners, ids, objPoints, imgPoints);
                    solvePnP(objPoints, imgPoints, cameraMatrix, distCoeffs, rvec, tvec);
                }

                // check axes
                vector<Point2f> axes = getAxis(cameraMatrix, distCoeffs, rvec, tvec, gridboard.getRightBottomCorner().x);
                vector<Point2f> topLeft = getMarkerById(gridboard.getIds()[0], corners, ids);
                ASSERT_NEAR(topLeft[0].x, axes[0].x, 2.f);
                ASSERT_NEAR(topLeft[0].y, axes[0].y, 2.f);
                vector<Point2f> topRight = getMarkerById(gridboard.getIds()[2], corners, ids);
                ASSERT_NEAR(topRight[1].x, axes[1].x, 2.f);
                ASSERT_NEAR(topRight[1].y, axes[1].y, 2.f);
                vector<Point2f> bottomLeft = getMarkerById(gridboard.getIds()[6], corners, ids);
                ASSERT_NEAR(bottomLeft[3].x, axes[2].x, 2.f);
                ASSERT_NEAR(bottomLeft[3].y, axes[2].y, 2.f);

                // check estimate result
                for(unsigned int i = 0; i < ids.size(); i++) {
                    int foundIdx = -1;
                    for(unsigned int j = 0; j < gridboard.getIds().size(); j++) {
                        if(gridboard.getIds()[j] == ids[i]) {
                            foundIdx = int(j);
                            break;
                        }
                    }

                    if(foundIdx == -1) {
                        ts->printf(cvtest::TS::LOG, "Marker detected with wrong ID in Board test");
                        ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH);
                        return;
                    }

                    vector< Point2f > projectedCorners;
                    projectPoints(gridboard.getObjPoints()[foundIdx], rvec, tvec, cameraMatrix, distCoeffs,
                                  projectedCorners);

                    for(int c = 0; c < 4; c++) {
                        double repError = cv::norm(projectedCorners[c] - corners[i][c]);  // TODO cvtest
                        if(repError > 5.) {
                            ts->printf(cvtest::TS::LOG, "Corner reprojection error too high");
                            ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH);
                            return;
                        }
                    }
                }
            }
        }
    }
}



/**
 * @brief Check refine strategy
 */
class CV_ArucoRefine : public cvtest::BaseTest {
    public:
    CV_ArucoRefine(ArucoAlgParams arucoAlgParams)
    {
        aruco::Dictionary dictionary = aruco::getPredefinedDictionary(aruco::DICT_6X6_250);
        aruco::DetectorParameters params;
        params.minDistanceToBorder = 3;
        params.cornerRefinementMethod = (int)aruco::CORNER_REFINE_SUBPIX;
        if (arucoAlgParams == ArucoAlgParams::USE_ARUCO3)
            params.useAruco3Detection = true;
        aruco::RefineParameters refineParams(10.f, 3.f, true);
        detector = aruco::ArucoDetector(dictionary, params, refineParams);
    }

    protected:
    aruco::ArucoDetector detector;
    void run(int);
};


void CV_ArucoRefine::run(int) {

    int iter = 0;
    Mat cameraMatrix = Mat::eye(3, 3, CV_64FC1);
    Size imgSize(500, 500);
    cameraMatrix.at< double >(0, 0) = cameraMatrix.at< double >(1, 1) = 650;
    cameraMatrix.at< double >(0, 2) = imgSize.width / 2;
    cameraMatrix.at< double >(1, 2) = imgSize.height / 2;
    Mat distCoeffs(5, 1, CV_64FC1, Scalar::all(0));
    aruco::DetectorParameters detectorParameters = detector.getDetectorParameters();

    // for different perspectives
    for(double distance : {0.2, 0.4}) {
        for(int yaw = -60; yaw < 60; yaw += 30) {
            for(int pitch = -60; pitch <= 60; pitch += 30) {
                aruco::GridBoard gridboard(Size(3, 3), 0.02f, 0.005f, detector.getDictionary());
                int markerBorder = iter % 2 + 1;
                iter++;

                // create synthetic image
                Mat img = projectBoard(gridboard, cameraMatrix, deg2rad(yaw), deg2rad(pitch), distance,
                                       imgSize, markerBorder);
                // detect markers
                vector<vector<Point2f> > corners, rejected;
                vector<int> ids;
                detectorParameters.markerBorderBits = markerBorder;
                detector.setDetectorParameters(detectorParameters);
                detector.detectMarkers(img, corners, ids, rejected);

                // remove a marker from detection
                int markersBeforeDelete = (int)ids.size();
                if(markersBeforeDelete < 2) continue;

                rejected.push_back(corners[0]);
                corners.erase(corners.begin(), corners.begin() + 1);
                ids.erase(ids.begin(), ids.begin() + 1);

                // try to refind the erased marker
                detector.refineDetectedMarkers(img, gridboard, corners, ids, rejected, cameraMatrix,
                                               distCoeffs, noArray());

                // check result
                if((int)ids.size() < markersBeforeDelete) {
                    ts->printf(cvtest::TS::LOG, "Error in refine detected markers");
                    ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH);
                    return;
                }
            }
        }
    }
}

TEST(CV_ArucoBoardPose, accuracy) {
    CV_ArucoBoardPose test(ArucoAlgParams::USE_DEFAULT);
    test.safe_run();
}

typedef CV_ArucoBoardPose CV_Aruco3BoardPose;
TEST(CV_Aruco3BoardPose, accuracy) {
    CV_Aruco3BoardPose test(ArucoAlgParams::USE_ARUCO3);
    test.safe_run();
}

typedef CV_ArucoRefine CV_Aruco3Refine;

TEST(CV_ArucoRefine, accuracy) {
    CV_ArucoRefine test(ArucoAlgParams::USE_DEFAULT);
    test.safe_run();
}

TEST(CV_Aruco3Refine, accuracy) {
    CV_Aruco3Refine test(ArucoAlgParams::USE_ARUCO3);
    test.safe_run();
}

TEST(CV_ArucoBoardPose, CheckNegativeZ)
{
    double matrixData[9] = { -3.9062571886921410e+02, 0., 4.2350000000000000e+02,
                              0., 3.9062571886921410e+02, 2.3950000000000000e+02,
                              0., 0., 1 };
    cv::Mat cameraMatrix = cv::Mat(3, 3, CV_64F, matrixData);

    vector<cv::Point3f> pts3d1, pts3d2;
    pts3d1.push_back(cv::Point3f(0.326198f, -0.030621f, 0.303620f));
    pts3d1.push_back(cv::Point3f(0.325340f, -0.100594f, 0.301862f));
    pts3d1.push_back(cv::Point3f(0.255859f, -0.099530f, 0.293416f));
    pts3d1.push_back(cv::Point3f(0.256717f, -0.029557f, 0.295174f));

    pts3d2.push_back(cv::Point3f(-0.033144f, -0.034819f, 0.245216f));
    pts3d2.push_back(cv::Point3f(-0.035507f, -0.104705f, 0.241987f));
    pts3d2.push_back(cv::Point3f(-0.105289f, -0.102120f, 0.237120f));
    pts3d2.push_back(cv::Point3f(-0.102926f, -0.032235f, 0.240349f));

    vector<int> tmpIds = {0, 1};
    vector<vector<Point3f> > tmpObjectPoints = {pts3d1, pts3d2};
    aruco::Board board(tmpObjectPoints, aruco::getPredefinedDictionary(0), tmpIds);

    vector<vector<Point2f> > corners;
    vector<Point2f> pts2d;
    pts2d.push_back(cv::Point2f(37.7f, 203.3f));
    pts2d.push_back(cv::Point2f(38.5f, 120.5f));
    pts2d.push_back(cv::Point2f(105.5f, 115.8f));
    pts2d.push_back(cv::Point2f(104.2f, 202.7f));
    corners.push_back(pts2d);
    pts2d.clear();
    pts2d.push_back(cv::Point2f(476.0f, 184.2f));
    pts2d.push_back(cv::Point2f(479.6f, 73.8f));
    pts2d.push_back(cv::Point2f(590.9f, 77.0f));
    pts2d.push_back(cv::Point2f(587.5f, 188.1f));
    corners.push_back(pts2d);

    Vec3d rvec, tvec;
    int nUsed = 0;
    {
        Mat objPoints, imgPoints; // get object and image points for the solvePnP function
        board.matchImagePoints(corners, board.getIds(), objPoints, imgPoints);
        nUsed = (int)objPoints.total()/4;
        solvePnP(objPoints, imgPoints, cameraMatrix, Mat(), rvec, tvec);
    }
    ASSERT_EQ(nUsed, 2);

    cv::Matx33d rotm; cv::Point3d out;
    cv::Rodrigues(rvec, rotm);
    out = cv::Point3d(tvec) + rotm*Point3d(board.getObjPoints()[0][0]);
    ASSERT_GT(out.z, 0);

    corners.clear(); pts2d.clear();
    pts2d.push_back(cv::Point2f(38.4f, 204.5f));
    pts2d.push_back(cv::Point2f(40.0f, 124.7f));
    pts2d.push_back(cv::Point2f(102.0f, 119.1f));
    pts2d.push_back(cv::Point2f(99.9f, 203.6f));
    corners.push_back(pts2d);
    pts2d.clear();
    pts2d.push_back(cv::Point2f(476.0f, 184.3f));
    pts2d.push_back(cv::Point2f(479.2f, 75.1f));
    pts2d.push_back(cv::Point2f(588.7f, 79.2f));
    pts2d.push_back(cv::Point2f(586.3f, 188.5f));
    corners.push_back(pts2d);

    nUsed = 0;
    {
        Mat objPoints, imgPoints; // get object and image points for the solvePnP function
        board.matchImagePoints(corners, board.getIds(), objPoints, imgPoints);
        nUsed = (int)objPoints.total()/4;
        solvePnP(objPoints, imgPoints, cameraMatrix, Mat(), rvec, tvec, true);
    }
    ASSERT_EQ(nUsed, 2);

    cv::Rodrigues(rvec, rotm);
    out = cv::Point3d(tvec) + rotm*Point3d(board.getObjPoints()[0][0]);
    ASSERT_GT(out.z, 0);
}

TEST(CV_ArucoGenerateBoard, regression_1226) {
    int bwidth = 1600;
    int bheight = 1200;

    cv::aruco::Dictionary dict = cv::aruco::getPredefinedDictionary(cv::aruco::DICT_4X4_50);
    cv::aruco::CharucoBoard board(Size(7, 5), 1.0, 0.75, dict);
    cv::Size sz(bwidth, bheight);
    cv::Mat mat;

    ASSERT_NO_THROW(
    {
        board.generateImage(sz, mat, 0, 1);
    });
}

TEST(CV_ArucoDictionary, extendDictionary) {
    aruco::Dictionary base_dictionary = aruco::getPredefinedDictionary(aruco::DICT_4X4_250);
    aruco::Dictionary custom_dictionary = aruco::extendDictionary(150, 4, base_dictionary);

    ASSERT_EQ(custom_dictionary.bytesList.rows, 150);
    ASSERT_EQ(cv::norm(custom_dictionary.bytesList, base_dictionary.bytesList.rowRange(0, 150)), 0.);
}

}} // namespace