1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
|
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "test_precomp.hpp"
namespace opencv_test { namespace {
// label format:
// image_name
// num_face
// face_1
// face_..
// face_num
std::map<std::string, Mat> blobFromTXT(const std::string& path, int numCoords)
{
std::ifstream ifs(path.c_str());
CV_Assert(ifs.is_open());
std::map<std::string, Mat> gt;
Mat faces;
int faceNum = -1;
int faceCount = 0;
for (std::string line, key; getline(ifs, line); )
{
std::istringstream iss(line);
if (line.find(".png") != std::string::npos)
{
// Get filename
iss >> key;
}
else if (line.find(" ") == std::string::npos)
{
// Get the number of faces
iss >> faceNum;
}
else
{
// Get faces
Mat face(1, numCoords, CV_32FC1);
for (int j = 0; j < numCoords; j++)
{
iss >> face.at<float>(0, j);
}
faces.push_back(face);
faceCount++;
}
if (faceCount == faceNum)
{
// Store faces
gt[key] = faces;
faces.release();
faceNum = -1;
faceCount = 0;
}
}
return gt;
}
TEST(Objdetect_face_detection, regression)
{
// Pre-set params
float scoreThreshold = 0.7f;
float matchThreshold = 0.7f;
float l2disThreshold = 15.0f;
int numLM = 5;
int numCoords = 4 + 2 * numLM;
// Load ground truth labels
std::map<std::string, Mat> gt = blobFromTXT(findDataFile("dnn_face/detection/cascades_labels.txt"), numCoords);
// Initialize detector
std::string model = findDataFile("dnn/onnx/models/yunet-202303.onnx", false);
Ptr<FaceDetectorYN> faceDetector = FaceDetectorYN::create(model, "", Size(300, 300));
faceDetector->setScoreThreshold(0.7f);
// Detect and match
for (auto item: gt)
{
std::string imagePath = findDataFile("cascadeandhog/images/" + item.first);
Mat image = imread(imagePath);
// Set input size
faceDetector->setInputSize(image.size());
// Run detection
Mat faces;
faceDetector->detect(image, faces);
// std::cout << item.first << " " << item.second.rows << " " << faces.rows << std::endl;
// Match bboxes and landmarks
std::vector<bool> matchedItem(item.second.rows, false);
for (int i = 0; i < faces.rows; i++)
{
if (faces.at<float>(i, numCoords) < scoreThreshold)
continue;
bool boxMatched = false;
std::vector<bool> lmMatched(numLM, false);
cv::Rect2f resBox(faces.at<float>(i, 0), faces.at<float>(i, 1), faces.at<float>(i, 2), faces.at<float>(i, 3));
for (int j = 0; j < item.second.rows && !boxMatched; j++)
{
if (matchedItem[j])
continue;
// Retrieve bbox and compare IoU
cv::Rect2f gtBox(item.second.at<float>(j, 0), item.second.at<float>(j, 1), item.second.at<float>(j, 2), item.second.at<float>(j, 3));
double interArea = (resBox & gtBox).area();
double iou = interArea / (resBox.area() + gtBox.area() - interArea);
if (iou >= matchThreshold)
{
boxMatched = true;
matchedItem[j] = true;
}
// Match landmarks if bbox is matched
if (!boxMatched)
continue;
for (int lmIdx = 0; lmIdx < numLM; lmIdx++)
{
float gtX = item.second.at<float>(j, 4 + 2 * lmIdx);
float gtY = item.second.at<float>(j, 4 + 2 * lmIdx + 1);
float resX = faces.at<float>(i, 4 + 2 * lmIdx);
float resY = faces.at<float>(i, 4 + 2 * lmIdx + 1);
float l2dis = cv::sqrt((gtX - resX) * (gtX - resX) + (gtY - resY) * (gtY - resY));
if (l2dis <= l2disThreshold)
{
lmMatched[lmIdx] = true;
}
}
break;
}
EXPECT_TRUE(boxMatched) << "In image " << item.first << ", cannot match resBox " << resBox << " with any ground truth.";
if (boxMatched)
{
EXPECT_TRUE(std::all_of(lmMatched.begin(), lmMatched.end(), [](bool v) { return v; })) << "In image " << item.first << ", resBox " << resBox << " matched but its landmarks failed to match.";
}
}
}
}
TEST(Objdetect_face_recognition, regression)
{
// Pre-set params
float score_thresh = 0.9f;
float nms_thresh = 0.3f;
double cosine_similar_thresh = 0.363;
double l2norm_similar_thresh = 1.128;
// Load ground truth labels
std::ifstream ifs(findDataFile("dnn_face/recognition/cascades_label.txt").c_str());
CV_Assert(ifs.is_open());
std::set<std::string> fSet;
std::map<std::string, Mat> featureMap;
std::map<std::pair<std::string, std::string>, int> gtMap;
for (std::string line, key; getline(ifs, line);)
{
std::string fname1, fname2;
int label;
std::istringstream iss(line);
iss>>fname1>>fname2>>label;
// std::cout<<fname1<<" "<<fname2<<" "<<label<<std::endl;
fSet.insert(fname1);
fSet.insert(fname2);
gtMap[std::make_pair(fname1, fname2)] = label;
}
// Initialize detector
std::string detect_model = findDataFile("dnn/onnx/models/yunet-202303.onnx", false);
Ptr<FaceDetectorYN> faceDetector = FaceDetectorYN::create(detect_model, "", Size(150, 150), score_thresh, nms_thresh);
std::string recog_model = findDataFile("dnn/onnx/models/face_recognizer_fast.onnx", false);
Ptr<FaceRecognizerSF> faceRecognizer = FaceRecognizerSF::create(recog_model, "");
// Detect and match
for (auto fname: fSet)
{
std::string imagePath = findDataFile("dnn_face/recognition/" + fname);
Mat image = imread(imagePath);
Mat faces;
faceDetector->detect(image, faces);
Mat aligned_face;
faceRecognizer->alignCrop(image, faces.row(0), aligned_face);
Mat feature;
faceRecognizer->feature(aligned_face, feature);
featureMap[fname] = feature.clone();
}
for (auto item: gtMap)
{
Mat feature1 = featureMap[item.first.first];
Mat feature2 = featureMap[item.first.second];
int label = item.second;
double cos_score = faceRecognizer->match(feature1, feature2, FaceRecognizerSF::DisType::FR_COSINE);
double L2_score = faceRecognizer->match(feature1, feature2, FaceRecognizerSF::DisType::FR_NORM_L2);
EXPECT_TRUE(label == 0 ? cos_score <= cosine_similar_thresh : cos_score > cosine_similar_thresh) << "Cosine match result of images " << item.first.first << " and " << item.first.second << " is different from ground truth (score: "<< cos_score <<";Thresh: "<< cosine_similar_thresh <<").";
EXPECT_TRUE(label == 0 ? L2_score > l2norm_similar_thresh : L2_score <= l2norm_similar_thresh) << "L2norm match result of images " << item.first.first << " and " << item.first.second << " is different from ground truth (score: "<< L2_score <<";Thresh: "<< l2norm_similar_thresh <<").";
}
}
}} // namespace
|