File: api_refinement.py

package info (click to toggle)
opencv 4.10.0%2Bdfsg-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 282,092 kB
  • sloc: cpp: 1,178,079; xml: 682,621; python: 49,092; lisp: 31,150; java: 25,469; ansic: 11,039; javascript: 6,085; sh: 1,214; cs: 601; perl: 494; objc: 210; makefile: 173
file content (337 lines) | stat: -rw-r--r-- 12,314 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
__all__ = [
    "apply_manual_api_refinement"
]

from typing import cast, Sequence, Callable, Iterable

from .nodes import (NamespaceNode, FunctionNode, OptionalTypeNode, TypeNode,
                    ClassProperty, PrimitiveTypeNode, ASTNodeTypeNode,
                    AggregatedTypeNode, CallableTypeNode, AnyTypeNode,
                    TupleTypeNode, UnionTypeNode, ProtocolClassNode,
                    DictTypeNode, ClassTypeNode)
from .ast_utils import (find_function_node, SymbolName,
                        for_each_function_overload)
from .types_conversion import create_type_node


def apply_manual_api_refinement(root: NamespaceNode) -> None:
    refine_highgui_module(root)
    refine_cuda_module(root)
    export_matrix_type_constants(root)
    refine_dnn_module(root)
    # Export OpenCV exception class
    builtin_exception = root.add_class("Exception")
    builtin_exception.is_exported = False
    root.add_class("error", (builtin_exception, ), ERROR_CLASS_PROPERTIES)
    for symbol_name, refine_symbol in NODES_TO_REFINE.items():
        refine_symbol(root, symbol_name)
    version_constant = root.add_constant("__version__", "<unused>")
    version_constant._value_type = "str"

    """
    def redirectError(
        onError: Callable[[int, str, str, str, int], None] | None
    ) -> None: ...
    """
    root.add_function("redirectError", [
        FunctionNode.Arg(
            "onError",
            OptionalTypeNode(
                CallableTypeNode(
                    "ErrorCallback",
                    [
                        PrimitiveTypeNode.int_(),
                        PrimitiveTypeNode.str_(),
                        PrimitiveTypeNode.str_(),
                        PrimitiveTypeNode.str_(),
                        PrimitiveTypeNode.int_()
                    ]
                )
            )
        )
    ])


def export_matrix_type_constants(root: NamespaceNode) -> None:
    MAX_PREDEFINED_CHANNELS = 4

    depth_names = ("CV_8U", "CV_8S", "CV_16U", "CV_16S", "CV_32S",
                   "CV_32F", "CV_64F", "CV_16F")
    for depth_value, depth_name in enumerate(depth_names):
        # Export depth constants
        root.add_constant(depth_name, str(depth_value))
        # Export predefined types
        for c in range(MAX_PREDEFINED_CHANNELS):
            root.add_constant(f"{depth_name}C{c + 1}",
                              f"{depth_value + 8 * c}")
        # Export type creation function
        root.add_function(
            f"{depth_name}C",
            (FunctionNode.Arg("channels", PrimitiveTypeNode.int_()), ),
            FunctionNode.RetType(PrimitiveTypeNode.int_())
        )
    # Export CV_MAKETYPE
    root.add_function(
        "CV_MAKETYPE",
        (FunctionNode.Arg("depth", PrimitiveTypeNode.int_()),
         FunctionNode.Arg("channels", PrimitiveTypeNode.int_())),
        FunctionNode.RetType(PrimitiveTypeNode.int_())
    )


def make_optional_arg(arg_name: str) -> Callable[[NamespaceNode, SymbolName], None]:
    def _make_optional_arg(root_node: NamespaceNode,
                           function_symbol_name: SymbolName) -> None:
        function = find_function_node(root_node, function_symbol_name)
        for overload in function.overloads:
            arg_idx = _find_argument_index(overload.arguments, arg_name)
            # Avoid multiplying optional qualification
            if isinstance(overload.arguments[arg_idx].type_node, OptionalTypeNode):
                continue

            overload.arguments[arg_idx].type_node = OptionalTypeNode(
                cast(TypeNode, overload.arguments[arg_idx].type_node)
            )

    return _make_optional_arg


def refine_cuda_module(root: NamespaceNode) -> None:
    def fix_cudaoptflow_enums_names() -> None:
        for class_name in ("NvidiaOpticalFlow_1_0", "NvidiaOpticalFlow_2_0"):
            if class_name not in cuda_root.classes:
                continue
            opt_flow_class = cuda_root.classes[class_name]
            _trim_class_name_from_argument_types(
                for_each_function_overload(opt_flow_class), class_name
            )

    def fix_namespace_usage_scope(cuda_ns: NamespaceNode) -> None:
        USED_TYPES = ("GpuMat", "Stream")

        def fix_type_usage(type_node: TypeNode) -> None:
            if isinstance(type_node, AggregatedTypeNode):
                for item in type_node.items:
                    fix_type_usage(item)
            if isinstance(type_node, ASTNodeTypeNode):
                if type_node._typename in USED_TYPES:
                    type_node._typename = f"cuda_{type_node._typename}"

        for overload in for_each_function_overload(cuda_ns):
            if overload.return_type is not None:
                fix_type_usage(overload.return_type.type_node)
            for type_node in [arg.type_node for arg in overload.arguments
                              if arg.type_node is not None]:
                fix_type_usage(type_node)

    if "cuda" not in root.namespaces:
        return
    cuda_root = root.namespaces["cuda"]
    fix_cudaoptflow_enums_names()
    for ns in [ns for ns_name, ns in root.namespaces.items()
               if ns_name.startswith("cuda")]:
        fix_namespace_usage_scope(ns)


def refine_highgui_module(root: NamespaceNode) -> None:
    # Check if library is built with enabled highgui module
    if "destroyAllWindows" not in root.functions:
        return
    """
    def createTrackbar(trackbarName: str,
                       windowName: str,
                       value: int,
                       count: int,
                       onChange: Callable[[int], None]) -> None: ...
    """
    root.add_function(
        "createTrackbar",
        [
            FunctionNode.Arg("trackbarName", PrimitiveTypeNode.str_()),
            FunctionNode.Arg("windowName", PrimitiveTypeNode.str_()),
            FunctionNode.Arg("value", PrimitiveTypeNode.int_()),
            FunctionNode.Arg("count", PrimitiveTypeNode.int_()),
            FunctionNode.Arg("onChange",
                             CallableTypeNode("TrackbarCallback",
                                              PrimitiveTypeNode.int_("int"))),
        ]
    )
    """
    def createButton(buttonName: str,
                     onChange: Callable[[tuple[int] | tuple[int, Any]], None],
                     userData: Any | None = ...,
                     buttonType: int = ...,
                     initialButtonState: int = ...) -> None: ...
    """
    root.add_function(
        "createButton",
        [
            FunctionNode.Arg("buttonName", PrimitiveTypeNode.str_()),
            FunctionNode.Arg(
                "onChange",
                CallableTypeNode(
                    "ButtonCallback",
                    UnionTypeNode(
                        "onButtonChangeCallbackData",
                        [
                            TupleTypeNode("onButtonChangeCallbackData",
                                          [PrimitiveTypeNode.int_(), ]),
                            TupleTypeNode("onButtonChangeCallbackData",
                                          [PrimitiveTypeNode.int_(),
                                           AnyTypeNode("void*")])
                        ]
                    )
                )),
            FunctionNode.Arg("userData",
                             OptionalTypeNode(AnyTypeNode("void*")),
                             default_value="None"),
            FunctionNode.Arg("buttonType", PrimitiveTypeNode.int_(),
                             default_value="0"),
            FunctionNode.Arg("initialButtonState", PrimitiveTypeNode.int_(),
                             default_value="0")
        ]
    )
    """
    def setMouseCallback(
        windowName: str,
        onMouse: Callback[[int, int, int, int, Any | None], None],
        param: Any | None = ...
    ) -> None: ...
    """
    root.add_function(
        "setMouseCallback",
        [
            FunctionNode.Arg("windowName", PrimitiveTypeNode.str_()),
            FunctionNode.Arg(
                "onMouse",
                CallableTypeNode("MouseCallback", [
                    PrimitiveTypeNode.int_(),
                    PrimitiveTypeNode.int_(),
                    PrimitiveTypeNode.int_(),
                    PrimitiveTypeNode.int_(),
                    OptionalTypeNode(AnyTypeNode("void*"))
                ])
            ),
            FunctionNode.Arg("param", OptionalTypeNode(AnyTypeNode("void*")),
                             default_value="None")
        ]
    )


def refine_dnn_module(root: NamespaceNode) -> None:
    if "dnn" not in root.namespaces:
        return
    dnn_module = root.namespaces["dnn"]

    """
    class LayerProtocol(Protocol):
        def __init__(
            self, params: dict[str, DictValue],
            blobs: typing.Sequence[cv2.typing.MatLike]
        ) -> None: ...

        def getMemoryShapes(
            self, inputs: typing.Sequence[typing.Sequence[int]]
        ) -> typing.Sequence[typing.Sequence[int]]: ...

        def forward(
            self, inputs: typing.Sequence[cv2.typing.MatLike]
        ) -> typing.Sequence[cv2.typing.MatLike]: ...
    """
    layer_proto = ProtocolClassNode("LayerProtocol", dnn_module)
    layer_proto.add_function(
        "__init__",
        arguments=[
            FunctionNode.Arg(
                "params",
                DictTypeNode(
                    "LayerParams", PrimitiveTypeNode.str_(),
                    create_type_node("cv::dnn::DictValue")
                )
            ),
            FunctionNode.Arg("blobs", create_type_node("vector<cv::Mat>"))
        ]
    )
    layer_proto.add_function(
        "getMemoryShapes",
        arguments=[
            FunctionNode.Arg("inputs",
                             create_type_node("vector<vector<int>>"))
        ],
        return_type=FunctionNode.RetType(
            create_type_node("vector<vector<int>>")
        )
    )
    layer_proto.add_function(
        "forward",
        arguments=[
            FunctionNode.Arg("inputs", create_type_node("vector<cv::Mat>"))
        ],
        return_type=FunctionNode.RetType(create_type_node("vector<cv::Mat>"))
    )

    """
    def dnn_registerLayer(layerTypeName: str,
                          layerClass: typing.Type[LayerProtocol]) -> None: ...
    """
    root.add_function(
        "dnn_registerLayer",
        arguments=[
            FunctionNode.Arg("layerTypeName", PrimitiveTypeNode.str_()),
            FunctionNode.Arg(
                "layerClass",
                ClassTypeNode(ASTNodeTypeNode(
                    layer_proto.export_name, f"dnn.{layer_proto.export_name}"
                ))
            )
        ]
    )

    """
    def dnn_unregisterLayer(layerTypeName: str) -> None: ...
    """
    root.add_function(
        "dnn_unregisterLayer",
        arguments=[
            FunctionNode.Arg("layerTypeName", PrimitiveTypeNode.str_())
        ]
    )


def _trim_class_name_from_argument_types(
    overloads: Iterable[FunctionNode.Overload],
    class_name: str
) -> None:
    separator = f"{class_name}_"
    for overload in overloads:
        for arg in [arg for arg in overload.arguments
                    if arg.type_node is not None]:
            ast_node = cast(ASTNodeTypeNode, arg.type_node)
            if class_name in ast_node.ctype_name:
                fixed_name = ast_node._typename.split(separator)[-1]
                ast_node._typename = fixed_name


def _find_argument_index(arguments: Sequence[FunctionNode.Arg],
                         name: str) -> int:
    for i, arg in enumerate(arguments):
        if arg.name == name:
            return i
    raise RuntimeError(
        f"Failed to find argument with name: '{name}' in {arguments}"
    )


NODES_TO_REFINE = {
    SymbolName(("cv", ), (), "resize"): make_optional_arg("dsize"),
    SymbolName(("cv", ), (), "calcHist"): make_optional_arg("mask"),
}

ERROR_CLASS_PROPERTIES = (
    ClassProperty("code", PrimitiveTypeNode.int_(), False),
    ClassProperty("err", PrimitiveTypeNode.str_(), False),
    ClassProperty("file", PrimitiveTypeNode.str_(), False),
    ClassProperty("func", PrimitiveTypeNode.str_(), False),
    ClassProperty("line", PrimitiveTypeNode.int_(), False),
    ClassProperty("msg", PrimitiveTypeNode.str_(), False),
)