1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
|
#!/usr/bin/env python
'''
CUDA-accelerated Computer Vision functions
'''
# Python 2/3 compatibility
from __future__ import print_function
import numpy as np
import cv2 as cv
import os
from tests_common import NewOpenCVTests, unittest
class cuda_test(NewOpenCVTests):
def setUp(self):
super(cuda_test, self).setUp()
if not cv.cuda.getCudaEnabledDeviceCount():
self.skipTest("No CUDA-capable device is detected")
def test_cuda_upload_download(self):
npMat = (np.random.random((128, 128, 3)) * 255).astype(np.uint8)
cuMat = cv.cuda_GpuMat()
cuMat.upload(npMat)
self.assertTrue(np.allclose(cuMat.download(), npMat))
def test_cuda_upload_download_stream(self):
stream = cv.cuda_Stream()
npMat = (np.random.random((128, 128, 3)) * 255).astype(np.uint8)
cuMat = cv.cuda_GpuMat(128,128, cv.CV_8UC3)
cuMat.upload(npMat, stream)
npMat2 = cuMat.download(stream=stream)
stream.waitForCompletion()
self.assertTrue(np.allclose(npMat2, npMat))
def test_cuda_interop(self):
npMat = (np.random.random((128, 128, 3)) * 255).astype(np.uint8)
cuMat = cv.cuda_GpuMat()
cuMat.upload(npMat)
self.assertTrue(cuMat.cudaPtr() != 0)
cuMatFromPtrSz = cv.cuda.createGpuMatFromCudaMemory(cuMat.size(),cuMat.type(),cuMat.cudaPtr(), cuMat.step)
self.assertTrue(cuMat.cudaPtr() == cuMatFromPtrSz.cudaPtr())
cuMatFromPtrRc = cv.cuda.createGpuMatFromCudaMemory(cuMat.size()[1],cuMat.size()[0],cuMat.type(),cuMat.cudaPtr(), cuMat.step)
self.assertTrue(cuMat.cudaPtr() == cuMatFromPtrRc.cudaPtr())
stream = cv.cuda_Stream()
self.assertTrue(stream.cudaPtr() != 0)
streamFromPtr = cv.cuda.wrapStream(stream.cudaPtr())
self.assertTrue(stream.cudaPtr() == streamFromPtr.cudaPtr())
asyncstream = cv.cuda_Stream(1) # cudaStreamNonBlocking
self.assertTrue(asyncstream.cudaPtr() != 0)
def test_cuda_buffer_pool(self):
cv.cuda.setBufferPoolUsage(True)
cv.cuda.setBufferPoolConfig(cv.cuda.getDevice(), 1024 * 1024 * 64, 2)
stream_a = cv.cuda.Stream()
pool_a = cv.cuda.BufferPool(stream_a)
cuMat = pool_a.getBuffer(1024, 1024, cv.CV_8UC3)
cv.cuda.setBufferPoolUsage(False)
self.assertEqual(cuMat.size(), (1024, 1024))
self.assertEqual(cuMat.type(), cv.CV_8UC3)
def test_cuda_release(self):
npMat = (np.random.random((128, 128, 3)) * 255).astype(np.uint8)
cuMat = cv.cuda_GpuMat()
cuMat.upload(npMat)
cuMat.release()
self.assertTrue(cuMat.cudaPtr() == 0)
self.assertTrue(cuMat.step == 0)
self.assertTrue(cuMat.size() == (0, 0))
def test_cuda_convertTo(self):
# setup
npMat_8UC4 = (np.random.random((128, 128, 4)) * 255).astype(np.uint8)
npMat_32FC4 = npMat_8UC4.astype(np.single)
new_type = cv.CV_32FC4
# sync
# in/out
cuMat_8UC4 = cv.cuda_GpuMat(npMat_8UC4)
cuMat_32FC4 = cv.cuda_GpuMat(cuMat_8UC4.size(), new_type)
cuMat_32FC4_out = cuMat_8UC4.convertTo(new_type, cuMat_32FC4)
self.assertTrue(cuMat_32FC4.cudaPtr() == cuMat_32FC4_out.cudaPtr())
npMat_32FC4_out = cuMat_32FC4.download()
self.assertTrue(np.array_equal(npMat_32FC4, npMat_32FC4_out))
# out
cuMat_32FC4_out = cuMat_8UC4.convertTo(new_type)
npMat_32FC4_out = cuMat_32FC4.download()
self.assertTrue(np.array_equal(npMat_32FC4, npMat_32FC4_out))
# async
stream = cv.cuda.Stream()
cuMat_32FC4 = cv.cuda_GpuMat(cuMat_8UC4.size(), new_type)
cuMat_32FC4_out = cuMat_8UC4.convertTo(new_type, cuMat_32FC4)
# in/out
cuMat_32FC4_out = cuMat_8UC4.convertTo(new_type, 1, 0, stream, cuMat_32FC4)
self.assertTrue(cuMat_32FC4.cudaPtr() == cuMat_32FC4_out.cudaPtr())
npMat_32FC4_out = cuMat_32FC4.download(stream)
stream.waitForCompletion()
self.assertTrue(np.array_equal(npMat_32FC4, npMat_32FC4_out))
# out
cuMat_32FC4_out = cuMat_8UC4.convertTo(new_type, 1, 0, stream)
npMat_32FC4_out = cuMat_32FC4.download(stream)
stream.waitForCompletion()
self.assertTrue(np.array_equal(npMat_32FC4, npMat_32FC4_out))
def test_cuda_copyTo(self):
# setup
npMat_8UC4 = (np.random.random((128, 128, 4)) * 255).astype(np.uint8)
# sync
# in/out
cuMat_8UC4 = cv.cuda_GpuMat(npMat_8UC4)
cuMat_8UC4_dst = cv.cuda_GpuMat(cuMat_8UC4.size(), cuMat_8UC4.type())
cuMat_8UC4_out = cuMat_8UC4.copyTo(cuMat_8UC4_dst)
self.assertTrue(cuMat_8UC4_out.cudaPtr() == cuMat_8UC4_dst.cudaPtr())
npMat_8UC4_out = cuMat_8UC4_out.download()
self.assertTrue(np.array_equal(npMat_8UC4, npMat_8UC4_out))
# out
cuMat_8UC4_out = cuMat_8UC4.copyTo()
npMat_8UC4_out = cuMat_8UC4_out.download()
self.assertTrue(np.array_equal(npMat_8UC4, npMat_8UC4_out))
# async
stream = cv.cuda.Stream()
# in/out
cuMat_8UC4 = cv.cuda_GpuMat(npMat_8UC4)
cuMat_8UC4_dst = cv.cuda_GpuMat(cuMat_8UC4.size(), cuMat_8UC4.type())
cuMat_8UC4_out = cuMat_8UC4.copyTo(cuMat_8UC4_dst, stream)
self.assertTrue(cuMat_8UC4_out.cudaPtr() == cuMat_8UC4_out.cudaPtr())
npMat_8UC4_out = cuMat_8UC4_dst.download(stream)
stream.waitForCompletion()
self.assertTrue(np.array_equal(npMat_8UC4, npMat_8UC4_out))
# out
cuMat_8UC4_out = cuMat_8UC4.copyTo(stream)
npMat_8UC4_out = cuMat_8UC4_out.download(stream)
stream.waitForCompletion()
self.assertTrue(np.array_equal(npMat_8UC4, npMat_8UC4_out))
def test_cuda_denoising(self):
self.assertEqual(True, hasattr(cv.cuda, 'fastNlMeansDenoising'))
self.assertEqual(True, hasattr(cv.cuda, 'fastNlMeansDenoisingColored'))
self.assertEqual(True, hasattr(cv.cuda, 'nonLocalMeans'))
if __name__ == '__main__':
NewOpenCVTests.bootstrap()
|