File: test_misc.py

package info (click to toggle)
opencv 4.10.0%2Bdfsg-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 282,092 kB
  • sloc: cpp: 1,178,079; xml: 682,621; python: 49,092; lisp: 31,150; java: 25,469; ansic: 11,039; javascript: 6,085; sh: 1,214; cs: 601; perl: 494; objc: 210; makefile: 173
file content (992 lines) | stat: -rw-r--r-- 51,345 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
#!/usr/bin/env python
from __future__ import print_function

import sys
import ctypes
from functools import partial
from collections import namedtuple
import sys

if sys.version_info[0] < 3:
    from collections import Sequence
else:
    from collections.abc import Sequence

import numpy as np
import cv2 as cv

from tests_common import NewOpenCVTests, unittest


def is_numeric(dtype):
    return np.issubdtype(dtype, np.integer) or np.issubdtype(dtype, np.floating)


def get_limits(dtype):
    if not is_numeric(dtype):
        return None, None

    if np.issubdtype(dtype, np.integer):
        info = np.iinfo(dtype)
    else:
        info = np.finfo(dtype)
    return info.min, info.max


def get_conversion_error_msg(value, expected, actual):
    return 'Conversion "{}" of type "{}" failed\nExpected: "{}" vs Actual "{}"'.format(
        value, type(value).__name__, expected, actual
    )


def get_no_exception_msg(value):
    return 'Exception is not risen for {} of type {}'.format(value, type(value).__name__)


def rpad(src, dst_size, pad_value=0):
    """Extend `src` up to `dst_size` with given value.

    Args:
        src (np.ndarray | tuple | list): 1d array like object to pad.
        dst_size (_type_): Desired `src` size after padding.
        pad_value (int, optional): Padding value. Defaults to 0.

    Returns:
        np.ndarray: 1d array with len == `dst_size`.
    """
    src = np.asarray(src)
    if len(src.shape) != 1:
        raise ValueError("Only 1d arrays are supported")

    # Considering the meaning, it is desirable to use np.pad().
    # However, the old numpy doesn't include the following fixes and cannot work as expected.
    # So an alternative fix that combines np.append() and np.fill() is used.
    # https://docs.scipy.org/doc/numpy-1.13.0/release.html#support-for-returning-arrays-of-arbitrary-dimensions-in-apply-along-axis

    return np.append(src, np.full( dst_size - len(src), pad_value, dtype=src.dtype) )

def get_ocv_arithm_op_table(apply_saturation=False):
    def saturate(func):
        def wrapped_func(x, y):
            dst_dtype = x.dtype
            if apply_saturation:
                if np.issubdtype(x.dtype, np.integer):
                    x = x.astype(np.int64)
            # Apply padding or truncation for array-like `y` inputs
            if not isinstance(y, (float, int)):
                if len(y) > x.shape[-1]:
                    y = y[:x.shape[-1]]
                else:
                    y = rpad(y, x.shape[-1], pad_value=0)

            dst = func(x, y)
            if apply_saturation:
                min_val, max_val = get_limits(dst_dtype)
                dst = np.clip(dst, min_val, max_val)
            return dst.astype(dst_dtype)
        return wrapped_func

    @saturate
    def subtract(x, y):
        return x - y

    @saturate
    def add(x, y):
        return x + y

    @saturate
    def divide(x, y):
        if not isinstance(y, (int, float)):
            dst_dtype = np.result_type(x, y)
            y = np.array(y).astype(dst_dtype)
            _, max_value = get_limits(dst_dtype)
            y[y == 0] = max_value

        # to compatible between python2 and python3, it calicurates with float.
        # python2: int / int = int
        # python3: int / int = float
        dst = 1.0 * x / y

        if np.issubdtype(x.dtype, np.integer):
            dst = np.rint(dst)
        return dst

    @saturate
    def multiply(x, y):
        return x * y

    @saturate
    def absdiff(x, y):
        res = np.abs(x - y)
        return res

    return {
        cv.subtract: subtract,
        cv.add: add,
        cv.multiply: multiply,
        cv.divide: divide,
        cv.absdiff: absdiff
    }


class Bindings(NewOpenCVTests):

    def test_inheritance(self):
        bm = cv.StereoBM_create()
        bm.getPreFilterCap()  # from StereoBM
        bm.getBlockSize()  # from SteroMatcher

        boost = cv.ml.Boost_create()
        boost.getBoostType()  # from ml::Boost
        boost.getMaxDepth()  # from ml::DTrees
        boost.isClassifier()  # from ml::StatModel

    def test_raiseGeneralException(self):
        with self.assertRaises((cv.error,),
                            msg='C++ exception is not propagated to Python in the right way') as cm:
            cv.utils.testRaiseGeneralException()
        self.assertEqual(str(cm.exception), 'exception text')

    def test_redirectError(self):
        try:
            cv.imshow("", None)  # This causes an assert
            self.assertEqual("Dead code", 0)
        except cv.error as _e:
            pass

        handler_called = [False]

        def test_error_handler(status, func_name, err_msg, file_name, line):
            handler_called[0] = True

        cv.redirectError(test_error_handler)
        try:
            cv.imshow("", None)  # This causes an assert
            self.assertEqual("Dead code", 0)
        except cv.error as _e:
            self.assertEqual(handler_called[0], True)
            pass

        cv.redirectError(None)
        try:
            cv.imshow("", None)  # This causes an assert
            self.assertEqual("Dead code", 0)
        except cv.error as _e:
            pass

    def test_overload_resolution_can_choose_correct_overload(self):
        val = 123
        point = (51, 165)
        self.assertEqual(cv.utils.testOverloadResolution(val, point),
                         'overload (int={}, point=(x={}, y={}))'.format(val, *point),
                         "Can't select first overload if all arguments are provided as positional")

        self.assertEqual(cv.utils.testOverloadResolution(val, point=point),
                         'overload (int={}, point=(x={}, y={}))'.format(val, *point),
                         "Can't select first overload if one of the arguments are provided as keyword")

        self.assertEqual(cv.utils.testOverloadResolution(val),
                         'overload (int={}, point=(x=42, y=24))'.format(val),
                         "Can't select first overload if one of the arguments has default value")

        rect = (1, 5, 10, 23)
        self.assertEqual(cv.utils.testOverloadResolution(rect),
                         'overload (rect=(x={}, y={}, w={}, h={}))'.format(*rect),
                         "Can't select second overload if all arguments are provided")

    def test_overload_resolution_fails(self):
        def test_overload_resolution(msg, *args, **kwargs):
            no_exception_msg = 'Overload resolution failed without any exception for: "{}"'.format(msg)
            wrong_exception_msg = 'Overload resolution failed with wrong exception type for: "{}"'.format(msg)
            with self.assertRaises((cv.error, Exception), msg=no_exception_msg) as cm:
                res = cv.utils.testOverloadResolution(*args, **kwargs)
                self.fail("Unexpected result for {}: '{}'".format(msg, res))
            self.assertEqual(type(cm.exception), cv.error, wrong_exception_msg)

        test_overload_resolution('wrong second arg type (keyword arg)', 5, point=(1, 2, 3))
        test_overload_resolution('wrong second arg type', 5, 2)
        test_overload_resolution('wrong first arg', 3.4, (12, 21))
        test_overload_resolution('wrong first arg, no second arg', 4.5)
        test_overload_resolution('wrong args number for first overload', 3, (12, 21), 123)
        test_overload_resolution('wrong args number for second overload', (3, 12, 12, 1), (12, 21))
        # One of the common problems
        test_overload_resolution('rect with float coordinates', (4.5, 4, 2, 1))
        test_overload_resolution('rect with wrong number of coordinates', (4, 4, 1))

    def test_properties_with_reserved_keywords_names_are_transformed(self):
        obj = cv.utils.ClassWithKeywordProperties(except_arg=23)
        self.assertTrue(hasattr(obj, "lambda_"),
                        msg="Class doesn't have RW property with converted name")
        try:
            obj.lambda_ = 32
        except Exception as e:
            self.fail("Failed to set value to RW property. Error: {}".format(e))

        self.assertTrue(hasattr(obj, "except_"),
                        msg="Class doesn't have readonly property with converted name")
        self.assertEqual(obj.except_, 23,
                         msg="Can't access readonly property value")
        with self.assertRaises(AttributeError):
            obj.except_ = 32

    def test_maketype(self):
        data = {
            cv.CV_8UC3: [cv.CV_8U, 3, cv.CV_8UC],
            cv.CV_16SC1: [cv.CV_16S, 1, cv.CV_16SC],
            cv.CV_32FC4: [cv.CV_32F, 4, cv.CV_32FC],
            cv.CV_64FC2: [cv.CV_64F, 2, cv.CV_64FC],
            cv.CV_8SC4: [cv.CV_8S, 4, cv.CV_8SC],
            cv.CV_16UC2: [cv.CV_16U, 2, cv.CV_16UC],
            cv.CV_32SC1: [cv.CV_32S, 1, cv.CV_32SC],
            cv.CV_16FC3: [cv.CV_16F, 3, cv.CV_16FC],
        }
        for ref, (depth, channels, func) in data.items():
            self.assertEqual(ref, cv.CV_MAKETYPE(depth, channels))
            self.assertEqual(ref, func(channels))


class Arguments(NewOpenCVTests):

    def _try_to_convert(self, conversion, value):
        try:
            result = conversion(value).lower()
        except Exception as e:
            self.fail(
                '{} "{}" is risen for conversion {} of type {}'.format(
                    type(e).__name__, e, value, type(value).__name__
                )
            )
        else:
            return result

    def test_InputArray(self):
        res1 = cv.utils.dumpInputArray(None)
        # self.assertEqual(res1, "InputArray: noArray()")  # not supported
        self.assertEqual(res1, "InputArray: empty()=true kind=0x00010000 flags=0x01010000 total(-1)=0 dims(-1)=0 size(-1)=0x0 type(-1)=CV_8UC1")
        res2_1 = cv.utils.dumpInputArray((1, 2))
        self.assertEqual(res2_1, "InputArray: empty()=false kind=0x00010000 flags=0x01010000 total(-1)=2 dims(-1)=2 size(-1)=1x2 type(-1)=CV_64FC1")
        res2_2 = cv.utils.dumpInputArray(1.5)  # Scalar(1.5, 1.5, 1.5, 1.5)
        self.assertEqual(res2_2, "InputArray: empty()=false kind=0x00010000 flags=0x01010000 total(-1)=4 dims(-1)=2 size(-1)=1x4 type(-1)=CV_64FC1")
        a = np.array([[1, 2], [3, 4], [5, 6]])
        res3 = cv.utils.dumpInputArray(a)  # 32SC1
        self.assertEqual(res3, "InputArray: empty()=false kind=0x00010000 flags=0x01010000 total(-1)=6 dims(-1)=2 size(-1)=2x3 type(-1)=CV_32SC1")
        a = np.array([[[1, 2], [3, 4], [5, 6]]], dtype='f')
        res4 = cv.utils.dumpInputArray(a)  # 32FC2
        self.assertEqual(res4, "InputArray: empty()=false kind=0x00010000 flags=0x01010000 total(-1)=3 dims(-1)=2 size(-1)=3x1 type(-1)=CV_32FC2")
        a = np.array([[[1, 2]], [[3, 4]], [[5, 6]]], dtype=float)
        res5 = cv.utils.dumpInputArray(a)  # 64FC2
        self.assertEqual(res5, "InputArray: empty()=false kind=0x00010000 flags=0x01010000 total(-1)=3 dims(-1)=2 size(-1)=1x3 type(-1)=CV_64FC2")
        a = np.zeros((2,3,4), dtype='f')
        res6 = cv.utils.dumpInputArray(a)
        self.assertEqual(res6, "InputArray: empty()=false kind=0x00010000 flags=0x01010000 total(-1)=6 dims(-1)=2 size(-1)=3x2 type(-1)=CV_32FC4")
        a = np.zeros((2,3,4,5), dtype='f')
        res7 = cv.utils.dumpInputArray(a)
        self.assertEqual(res7, "InputArray: empty()=false kind=0x00010000 flags=0x01010000 total(-1)=120 dims(-1)=4 size(-1)=[2 3 4 5] type(-1)=CV_32FC1")

    def test_InputArrayOfArrays(self):
        res1 = cv.utils.dumpInputArrayOfArrays(None)
        # self.assertEqual(res1, "InputArray: noArray()")  # not supported
        self.assertEqual(res1, "InputArrayOfArrays: empty()=true kind=0x00050000 flags=0x01050000 total(-1)=0 dims(-1)=1 size(-1)=0x0")
        res2_1 = cv.utils.dumpInputArrayOfArrays((1, 2))  # { Scalar:all(1), Scalar::all(2) }
        self.assertEqual(res2_1, "InputArrayOfArrays: empty()=false kind=0x00050000 flags=0x01050000 total(-1)=2 dims(-1)=1 size(-1)=2x1 type(0)=CV_64FC1 dims(0)=2 size(0)=1x4")
        res2_2 = cv.utils.dumpInputArrayOfArrays([1.5])
        self.assertEqual(res2_2, "InputArrayOfArrays: empty()=false kind=0x00050000 flags=0x01050000 total(-1)=1 dims(-1)=1 size(-1)=1x1 type(0)=CV_64FC1 dims(0)=2 size(0)=1x4")
        a = np.array([[1, 2], [3, 4], [5, 6]])
        b = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
        res3 = cv.utils.dumpInputArrayOfArrays([a, b])
        self.assertEqual(res3, "InputArrayOfArrays: empty()=false kind=0x00050000 flags=0x01050000 total(-1)=2 dims(-1)=1 size(-1)=2x1 type(0)=CV_32SC1 dims(0)=2 size(0)=2x3")
        c = np.array([[[1, 2], [3, 4], [5, 6]]], dtype='f')
        res4 = cv.utils.dumpInputArrayOfArrays([c, a, b])
        self.assertEqual(res4, "InputArrayOfArrays: empty()=false kind=0x00050000 flags=0x01050000 total(-1)=3 dims(-1)=1 size(-1)=3x1 type(0)=CV_32FC2 dims(0)=2 size(0)=3x1")
        a = np.zeros((2,3,4), dtype='f')
        res5 = cv.utils.dumpInputArrayOfArrays([a, b])
        self.assertEqual(res5, "InputArrayOfArrays: empty()=false kind=0x00050000 flags=0x01050000 total(-1)=2 dims(-1)=1 size(-1)=2x1 type(0)=CV_32FC4 dims(0)=2 size(0)=3x2")
        # TODO: fix conversion error
        #a = np.zeros((2,3,4,5), dtype='f')
        #res6 = cv.utils.dumpInputArray([a, b])
        #self.assertEqual(res6, "InputArrayOfArrays: empty()=false kind=0x00050000 flags=0x01050000 total(-1)=2 dims(-1)=1 size(-1)=2x1 type(0)=CV_32FC1 dims(0)=4 size(0)=[2 3 4 5]")

    def test_unsupported_numpy_data_types_string_description(self):
        for dtype in (object, str, np.complex128):
            test_array = np.zeros((4, 4, 3), dtype=dtype)
            msg = ".*type = {} is not supported".format(test_array.dtype)
            if sys.version_info[0] < 3:
                self.assertRaisesRegexp(
                    Exception, msg, cv.utils.dumpInputArray, test_array
                )
            else:
                self.assertRaisesRegex(
                    Exception, msg, cv.utils.dumpInputArray, test_array
                )

    def test_numpy_writeable_flag_is_preserved(self):
        array = np.zeros((10, 10, 1), dtype=np.uint8)
        array.setflags(write=False)
        with self.assertRaises(Exception):
            cv.rectangle(array, (0, 0), (5, 5), (255), 2)

    def test_20968(self):
        pixel = np.uint8([[[40, 50, 200]]])
        _ = cv.cvtColor(pixel, cv.COLOR_RGB2BGR)  # should not raise exception

    def test_parse_to_bool_convertible(self):
        try_to_convert = partial(self._try_to_convert, cv.utils.dumpBool)
        for convertible_true in (True, 1, 64, np.int8(123), np.int16(11), np.int32(2),
                                 np.int64(1), np.bool_(12)):
            actual = try_to_convert(convertible_true)
            self.assertEqual('bool: true', actual,
                             msg=get_conversion_error_msg(convertible_true, 'bool: true', actual))

        for convertible_false in (False, 0, np.uint8(0), np.bool_(0), np.int_(0)):
            actual = try_to_convert(convertible_false)
            self.assertEqual('bool: false', actual,
                             msg=get_conversion_error_msg(convertible_false, 'bool: false', actual))

    def test_parse_to_bool_not_convertible(self):
        for not_convertible in (1.2, np.float32(2.3), 's', 'str', (1, 2), [1, 2], complex(1, 1),
                                complex(imag=2), complex(1.1), np.array([1, 0], dtype=bool)):
            with self.assertRaises((TypeError, OverflowError),
                                   msg=get_no_exception_msg(not_convertible)):
                _ = cv.utils.dumpBool(not_convertible)

    def test_parse_to_bool_convertible_extra(self):
        try_to_convert = partial(self._try_to_convert, cv.utils.dumpBool)
        _, max_size_t = get_limits(ctypes.c_size_t)
        for convertible_true in (-1, max_size_t):
            actual = try_to_convert(convertible_true)
            self.assertEqual('bool: true', actual,
                             msg=get_conversion_error_msg(convertible_true, 'bool: true', actual))

    def test_parse_to_bool_not_convertible_extra(self):
        for not_convertible in (np.array([False]), np.array([True])):
            with self.assertRaises((TypeError, OverflowError),
                                   msg=get_no_exception_msg(not_convertible)):
                _ = cv.utils.dumpBool(not_convertible)

    def test_parse_to_int_convertible(self):
        try_to_convert = partial(self._try_to_convert, cv.utils.dumpInt)
        min_int, max_int = get_limits(ctypes.c_int)
        for convertible in (-10, -1, 2, int(43.2), np.uint8(15), np.int8(33), np.int16(-13),
                            np.int32(4), np.int64(345), (23), min_int, max_int, np.int_(33)):
            expected = 'int: {0:d}'.format(convertible)
            actual = try_to_convert(convertible)
            self.assertEqual(expected, actual,
                             msg=get_conversion_error_msg(convertible, expected, actual))

    def test_parse_to_int_not_convertible(self):
        min_int, max_int = get_limits(ctypes.c_int)
        for not_convertible in (1.2, float(3), np.float32(4), np.double(45), 's', 'str',
                                np.array([1, 2]), (1,), [1, 2], min_int - 1, max_int + 1,
                                complex(1, 1), complex(imag=2), complex(1.1)):
            with self.assertRaises((TypeError, OverflowError, ValueError),
                                   msg=get_no_exception_msg(not_convertible)):
                _ = cv.utils.dumpInt(not_convertible)

    def test_parse_to_int_not_convertible_extra(self):
        for not_convertible in (np.bool_(True), True, False, np.float32(2.3),
                                np.array([3, ], dtype=int), np.array([-2, ], dtype=np.int32),
                                np.array([11, ], dtype=np.uint8)):
            with self.assertRaises((TypeError, OverflowError),
                                   msg=get_no_exception_msg(not_convertible)):
                _ = cv.utils.dumpInt(not_convertible)

    def test_parse_to_int64_convertible(self):
        try_to_convert = partial(self._try_to_convert, cv.utils.dumpInt64)
        min_int64, max_int64 = get_limits(ctypes.c_longlong)
        for convertible in (-10, -1, 2, int(43.2), np.uint8(15), np.int8(33), np.int16(-13),
                            np.int32(4), np.int64(345), (23), min_int64, max_int64, np.int_(33)):
            expected = 'int64: {0:d}'.format(convertible)
            actual = try_to_convert(convertible)
            self.assertEqual(expected, actual,
                             msg=get_conversion_error_msg(convertible, expected, actual))

    def test_parse_to_int64_not_convertible(self):
        min_int64, max_int64 = get_limits(ctypes.c_longlong)
        for not_convertible in (1.2, np.float32(4), float(3), np.double(45), 's', 'str',
                                np.array([1, 2]), (1,), [1, 2], min_int64 - 1, max_int64 + 1,
                                complex(1, 1), complex(imag=2), complex(1.1), np.bool_(True),
                                True, False, np.float32(2.3), np.array([3, ], dtype=int),
                                np.array([-2, ], dtype=np.int32), np.array([11, ], dtype=np.uint8)):
            with self.assertRaises((TypeError, OverflowError, ValueError),
                                   msg=get_no_exception_msg(not_convertible)):
                _ = cv.utils.dumpInt64(not_convertible)

    def test_parse_to_size_t_convertible(self):
        try_to_convert = partial(self._try_to_convert, cv.utils.dumpSizeT)
        _, max_uint = get_limits(ctypes.c_uint)
        for convertible in (2, max_uint, (12), np.uint8(34), np.int8(12), np.int16(23),
                            np.int32(123), np.int64(344), np.uint64(3), np.uint16(2), np.uint32(5),
                            np.uint(44)):
            expected = 'size_t: {0:d}'.format(convertible).lower()
            actual = try_to_convert(convertible)
            self.assertEqual(expected, actual,
                             msg=get_conversion_error_msg(convertible, expected, actual))

    def test_parse_to_size_t_not_convertible(self):
        min_long, _ = get_limits(ctypes.c_long)
        for not_convertible in (1.2, True, False, np.bool_(True), np.float32(4), float(3),
                                np.double(45), 's', 'str', np.array([1, 2]), (1,), [1, 2],
                                np.float64(6), complex(1, 1), complex(imag=2), complex(1.1),
                                -1, min_long, np.int8(-35)):
            with self.assertRaises((TypeError, OverflowError),
                                   msg=get_no_exception_msg(not_convertible)):
                _ = cv.utils.dumpSizeT(not_convertible)

    def test_parse_to_size_t_convertible_extra(self):
        try_to_convert = partial(self._try_to_convert, cv.utils.dumpSizeT)
        _, max_size_t = get_limits(ctypes.c_size_t)
        for convertible in (max_size_t,):
            expected = 'size_t: {0:d}'.format(convertible).lower()
            actual = try_to_convert(convertible)
            self.assertEqual(expected, actual,
                             msg=get_conversion_error_msg(convertible, expected, actual))

    def test_parse_to_size_t_not_convertible_extra(self):
        for not_convertible in (np.bool_(True), True, False, np.array([123, ], dtype=np.uint8),):
            with self.assertRaises((TypeError, OverflowError),
                                   msg=get_no_exception_msg(not_convertible)):
                _ = cv.utils.dumpSizeT(not_convertible)

    def test_parse_to_float_convertible(self):
        try_to_convert = partial(self._try_to_convert, cv.utils.dumpFloat)
        min_float, max_float = get_limits(ctypes.c_float)
        for convertible in (2, -13, 1.24, np.float32(32.45), float(32), np.double(12.23),
                            np.float32(-12.3), np.float64(3.22), min_float,
                            max_float, np.inf, -np.inf, float('Inf'), -float('Inf'),
                            np.double(np.inf), np.double(-np.inf), np.double(float('Inf')),
                            np.double(-float('Inf'))):
            expected = 'Float: {0:.2f}'.format(convertible).lower()
            actual = try_to_convert(convertible)
            self.assertEqual(expected, actual,
                             msg=get_conversion_error_msg(convertible, expected, actual))

        # Workaround for Windows NaN tests due to Visual C runtime
        # special floating point values (indefinite NaN)
        for nan in (float('NaN'), np.nan, np.float32(np.nan), np.double(np.nan),
                    np.double(float('NaN'))):
            actual = try_to_convert(nan)
            self.assertIn('nan', actual, msg="Can't convert nan of type {} to float. "
                          "Actual: {}".format(type(nan).__name__, actual))

        min_double, max_double = get_limits(ctypes.c_double)
        for inf in (min_float * 10, max_float * 10, min_double, max_double):
            expected = 'float: {}inf'.format('-' if inf < 0 else '')
            actual = try_to_convert(inf)
            self.assertEqual(expected, actual,
                             msg=get_conversion_error_msg(inf, expected, actual))

    def test_parse_to_float_not_convertible(self):
        for not_convertible in ('s', 'str', (12,), [1, 2], np.array([1, 2], dtype=float),
                                np.array([1, 2], dtype=np.double), complex(1, 1), complex(imag=2),
                                complex(1.1)):
            with self.assertRaises((TypeError), msg=get_no_exception_msg(not_convertible)):
                _ = cv.utils.dumpFloat(not_convertible)

    def test_parse_to_float_not_convertible_extra(self):
        for not_convertible in (np.bool_(False), True, False, np.array([123, ], dtype=int),
                                np.array([1., ]), np.array([False]),
                                np.array([True])):
            with self.assertRaises((TypeError, OverflowError),
                                   msg=get_no_exception_msg(not_convertible)):
                _ = cv.utils.dumpFloat(not_convertible)

    def test_parse_to_double_convertible(self):
        try_to_convert = partial(self._try_to_convert, cv.utils.dumpDouble)
        min_float, max_float = get_limits(ctypes.c_float)
        min_double, max_double = get_limits(ctypes.c_double)
        for convertible in (2, -13, 1.24, np.float32(32.45), float(2), np.double(12.23),
                            np.float32(-12.3), np.float64(3.22), min_float,
                            max_float, min_double, max_double, np.inf, -np.inf, float('Inf'),
                            -float('Inf'), np.double(np.inf), np.double(-np.inf),
                            np.double(float('Inf')), np.double(-float('Inf'))):
            expected = 'Double: {0:.2f}'.format(convertible).lower()
            actual = try_to_convert(convertible)
            self.assertEqual(expected, actual,
                             msg=get_conversion_error_msg(convertible, expected, actual))

        # Workaround for Windows NaN tests due to Visual C runtime
        # special floating point values (indefinite NaN)
        for nan in (float('NaN'), np.nan, np.double(np.nan),
                    np.double(float('NaN'))):
            actual = try_to_convert(nan)
            self.assertIn('nan', actual, msg="Can't convert nan of type {} to double. "
                          "Actual: {}".format(type(nan).__name__, actual))

    def test_parse_to_double_not_convertible(self):
        for not_convertible in ('s', 'str', (12,), [1, 2], np.array([1, 2], dtype=np.float32),
                                np.array([1, 2], dtype=np.double), complex(1, 1), complex(imag=2),
                                complex(1.1)):
            with self.assertRaises((TypeError), msg=get_no_exception_msg(not_convertible)):
                _ = cv.utils.dumpDouble(not_convertible)

    def test_parse_to_double_not_convertible_extra(self):
        for not_convertible in (np.bool_(False), True, False, np.array([123, ], dtype=int),
                                np.array([1., ]), np.array([False]),
                                np.array([12.4], dtype=np.double), np.array([True])):
            with self.assertRaises((TypeError, OverflowError),
                                   msg=get_no_exception_msg(not_convertible)):
                _ = cv.utils.dumpDouble(not_convertible)

    def test_parse_to_cstring_convertible(self):
        try_to_convert = partial(self._try_to_convert, cv.utils.dumpCString)
        for convertible in ('', 's', 'str', str(123), ('char'), np.str_('test2')):
            expected = 'string: ' + convertible
            actual = try_to_convert(convertible)
            self.assertEqual(expected, actual,
                             msg=get_conversion_error_msg(convertible, expected, actual))

    def test_parse_to_cstring_not_convertible(self):
        for not_convertible in ((12,), ('t', 'e', 's', 't'), np.array(['123', ]),
                                np.array(['t', 'e', 's', 't']), 1, -1.4, True, False, None):
            with self.assertRaises((TypeError), msg=get_no_exception_msg(not_convertible)):
                _ = cv.utils.dumpCString(not_convertible)

    def test_parse_to_string_convertible(self):
        try_to_convert = partial(self._try_to_convert, cv.utils.dumpString)
        for convertible in (None, '', 's', 'str', str(123), np.str_('test2')):
            expected = 'string: ' + (convertible if convertible else '')
            actual = try_to_convert(convertible)
            self.assertEqual(expected, actual,
                             msg=get_conversion_error_msg(convertible, expected, actual))

    def test_parse_to_string_not_convertible(self):
        for not_convertible in ((12,), ('t', 'e', 's', 't'), np.array(['123', ]),
                                np.array(['t', 'e', 's', 't']), 1, True, False):
            with self.assertRaises((TypeError), msg=get_no_exception_msg(not_convertible)):
                _ = cv.utils.dumpString(not_convertible)

    def test_parse_to_rect_convertible(self):
        Rect = namedtuple('Rect', ('x', 'y', 'w', 'h'))
        try_to_convert = partial(self._try_to_convert, cv.utils.dumpRect)
        for convertible in ((1, 2, 4, 5), [5, 3, 10, 20], np.array([10, 20, 23, 10]),
                            Rect(10, 30, 40, 55), tuple(np.array([40, 20, 24, 20])),
                            list(np.array([20, 40, 30, 35]))):
            expected = 'rect: (x={}, y={}, w={}, h={})'.format(*convertible)
            actual = try_to_convert(convertible)
            self.assertEqual(expected, actual,
                             msg=get_conversion_error_msg(convertible, expected, actual))

    def test_parse_to_rect_not_convertible(self):
        for not_convertible in (np.empty(shape=(4, 1)), (), [], np.array([]), (12, ),
                                [3, 4, 5, 10, 123], {1: 2, 3:4, 5:10, 6:30},
                                '1234', np.array([1, 2, 3, 4], dtype=np.float32),
                                np.array([[1, 2], [3, 4], [5, 6], [6, 8]]), (1, 2, 5, 1.5)):
            with self.assertRaises((TypeError), msg=get_no_exception_msg(not_convertible)):
                _ = cv.utils.dumpRect(not_convertible)

    def test_parse_to_rotated_rect_convertible(self):
        RotatedRect = namedtuple('RotatedRect', ('center', 'size', 'angle'))
        try_to_convert = partial(self._try_to_convert, cv.utils.dumpRotatedRect)
        for convertible in (((2.5, 2.5), (10., 20.), 12.5), [[1.5, 10.5], (12.5, 51.5), 10],
                            RotatedRect((10, 40), np.array([10.5, 20.5]), 5),
                            np.array([[10, 6], [50, 50], 5.5], dtype=object)):
            center, size, angle = convertible
            expected = 'rotated_rect: (c_x={:.6f}, c_y={:.6f}, w={:.6f},' \
                       ' h={:.6f}, a={:.6f})'.format(center[0], center[1],
                                                     size[0], size[1], angle)
            actual = try_to_convert(convertible)
            self.assertEqual(expected, actual,
                             msg=get_conversion_error_msg(convertible, expected, actual))


    def test_wrap_rotated_rect(self):
        center = (34.5, 52.)
        size = (565.0, 140.0)
        angle = -177.5
        rect1 = cv.RotatedRect(center, size, angle)
        self.assertEqual(rect1.center, center)
        self.assertEqual(rect1.size, size)
        self.assertEqual(rect1.angle, angle)

        pts = [[ 319.7845, -5.6109037],
               [ 313.6778, 134.25586],
               [-250.78448, 109.6109],
               [-244.6778, -30.25586]]
        self.assertLess(np.max(np.abs(rect1.points() - pts)), 1e-4)

        rect2 = cv.RotatedRect(pts[0], pts[1], pts[2])
        _, inter_pts = cv.rotatedRectangleIntersection(rect1, rect2)
        self.assertLess(np.max(np.abs(inter_pts.reshape(-1, 2) - pts)), 1e-4)

    def test_result_rotated_rect_boundingRect2f(self):
        center = (0, 0)
        size = (10, 10)
        angle = 0
        gold_box = (-5.0, -5.0, 10.0, 10.0)
        rect1 = cv.RotatedRect(center, size, angle)
        bbox = rect1.boundingRect2f()
        self.assertEqual(gold_box, bbox)

    def test_parse_to_rotated_rect_not_convertible(self):
        for not_convertible in ([], (), np.array([]), (123, (45, 34), 1), {1: 2, 3: 4}, 123,
                                np.array([[123, 123, 14], [1, 3], 56], dtype=object), '123'):
            with self.assertRaises((TypeError), msg=get_no_exception_msg(not_convertible)):
                _ = cv.utils.dumpRotatedRect(not_convertible)

    def test_parse_to_term_criteria_convertible(self):
        TermCriteria = namedtuple('TermCriteria', ('type', 'max_count', 'epsilon'))
        try_to_convert = partial(self._try_to_convert, cv.utils.dumpTermCriteria)
        for convertible in ((1, 10, 1e-3), [2, 30, 1e-1], np.array([10, 20, 0.5], dtype=object),
                            TermCriteria(0, 5, 0.1)):
            expected = 'term_criteria: (type={}, max_count={}, epsilon={:.6f}'.format(*convertible)
            actual = try_to_convert(convertible)
            self.assertEqual(expected, actual,
                             msg=get_conversion_error_msg(convertible, expected, actual))

    def test_parse_to_term_criteria_not_convertible(self):
        for not_convertible in ([], (), np.array([]), [1, 4], (10,), (1.5, 34, 0.1),
                                {1: 5, 3: 5, 10: 10}, '145'):
            with self.assertRaises((TypeError), msg=get_no_exception_msg(not_convertible)):
                _ = cv.utils.dumpTermCriteria(not_convertible)

    def test_parse_to_range_convertible_to_all(self):
        try_to_convert = partial(self._try_to_convert, cv.utils.dumpRange)
        for convertible in ((), [], np.array([])):
            expected = 'range: all'
            actual = try_to_convert(convertible)
            self.assertEqual(expected, actual,
                             msg=get_conversion_error_msg(convertible, expected, actual))

    def test_parse_to_range_convertible(self):
        Range = namedtuple('Range', ('start', 'end'))
        try_to_convert = partial(self._try_to_convert, cv.utils.dumpRange)
        for convertible in ((10, 20), [-1, 3], np.array([10, 24]), Range(-4, 6)):
            expected = 'range: (s={}, e={})'.format(*convertible)
            actual = try_to_convert(convertible)
            self.assertEqual(expected, actual,
                             msg=get_conversion_error_msg(convertible, expected, actual))

    def test_parse_to_range_not_convertible(self):
        for not_convertible in ((1, ), [40, ], np.array([1, 4, 6]), {'a': 1, 'b': 40},
                                (1.5, 13.5), [3, 6.7], np.array([6.3, 2.1]), '14, 4'):
            with self.assertRaises((TypeError), msg=get_no_exception_msg(not_convertible)):
                _ = cv.utils.dumpRange(not_convertible)

    def test_reserved_keywords_are_transformed(self):
        default_lambda_value = 2
        default_from_value = 3
        format_str = "arg={}, lambda={}, from={}"
        self.assertEqual(
            cv.utils.testReservedKeywordConversion(20), format_str.format(20, default_lambda_value, default_from_value)
        )
        self.assertEqual(
            cv.utils.testReservedKeywordConversion(10, lambda_=10), format_str.format(10, 10, default_from_value)
        )
        self.assertEqual(
            cv.utils.testReservedKeywordConversion(10, from_=10), format_str.format(10, default_lambda_value, 10)
        )
        self.assertEqual(
            cv.utils.testReservedKeywordConversion(20, lambda_=-4, from_=12), format_str.format(20, -4, 12)
        )

    def test_parse_vector_int_convertible(self):
        np.random.seed(123098765)
        try_to_convert = partial(self._try_to_convert, cv.utils.dumpVectorOfInt)
        arr = np.random.randint(-20, 20, 40).astype(np.int32).reshape(10, 2, 2)
        int_min, int_max = get_limits(ctypes.c_int)
        for convertible in ((int_min, 1, 2, 3, int_max), [40, 50], tuple(),
                            np.array([int_min, -10, 24, int_max], dtype=np.int32),
                            np.array([10, 230, 12], dtype=np.uint8), arr[:, 0, 1],):
            expected = "[" + ", ".join(map(str, convertible)) + "]"
            actual = try_to_convert(convertible)
            self.assertEqual(expected, actual,
                             msg=get_conversion_error_msg(convertible, expected, actual))

    def test_parse_vector_int_not_convertible(self):
        np.random.seed(123098765)
        arr = np.random.randint(-20, 20, 40).astype(np.float32).reshape(10, 2, 2)
        int_min, int_max = get_limits(ctypes.c_int)
        test_dict = {1: 2, 3: 10, 10: 20}
        for not_convertible in ((int_min, 1, 2.5, 3, int_max), [True, 50], 'test', test_dict,
                                reversed([1, 2, 3]),
                                np.array([int_min, -10, 24, [1, 2]], dtype=object),
                                np.array([[1, 2], [3, 4]]), arr[:, 0, 1],):
            with self.assertRaises(TypeError, msg=get_no_exception_msg(not_convertible)):
                _ = cv.utils.dumpVectorOfInt(not_convertible)

    def test_parse_vector_double_convertible(self):
        np.random.seed(1230965)
        try_to_convert = partial(self._try_to_convert, cv.utils.dumpVectorOfDouble)
        arr = np.random.randint(-20, 20, 40).astype(np.int32).reshape(10, 2, 2)
        for convertible in ((1, 2.12, 3.5), [40, 50], tuple(),
                            np.array([-10, 24], dtype=np.int32),
                            np.array([-12.5, 1.4], dtype=np.double),
                            np.array([10, 230, 12], dtype=np.float32), arr[:, 0, 1], ):
            expected = "[" + ", ".join(map(lambda v: "{:.2f}".format(v), convertible)) + "]"
            actual = try_to_convert(convertible)
            self.assertEqual(expected, actual,
                             msg=get_conversion_error_msg(convertible, expected, actual))

    def test_parse_vector_double_not_convertible(self):
        test_dict = {1: 2, 3: 10, 10: 20}
        for not_convertible in (('t', 'e', 's', 't'), [True, 50.55], 'test', test_dict,
                                np.array([-10.1, 24.5, [1, 2]], dtype=object),
                                np.array([[1, 2], [3, 4]]),):
            with self.assertRaises(TypeError, msg=get_no_exception_msg(not_convertible)):
                _ = cv.utils.dumpVectorOfDouble(not_convertible)

    def test_parse_vector_rect_convertible(self):
        np.random.seed(1238765)
        try_to_convert = partial(self._try_to_convert, cv.utils.dumpVectorOfRect)
        arr_of_rect_int32 = np.random.randint(5, 20, 4 * 3).astype(np.int32).reshape(3, 4)
        arr_of_rect_cast = np.random.randint(10, 40, 4 * 5).astype(np.uint8).reshape(5, 4)
        for convertible in (((1, 2, 3, 4), (10, -20, 30, 10)), arr_of_rect_int32, arr_of_rect_cast,
                            arr_of_rect_int32.astype(np.int8), [[5, 3, 1, 4]],
                            ((np.int8(4), np.uint8(10), int(32), np.int16(55)),)):
            expected = "[" + ", ".join(map(lambda v: "[x={}, y={}, w={}, h={}]".format(*v), convertible)) + "]"
            actual = try_to_convert(convertible)
            self.assertEqual(expected, actual,
                             msg=get_conversion_error_msg(convertible, expected, actual))

    def test_parse_vector_rect_not_convertible(self):
        np.random.seed(1238765)
        arr = np.random.randint(5, 20, 4 * 3).astype(np.float32).reshape(3, 4)
        for not_convertible in (((1, 2, 3, 4), (10.5, -20, 30.1, 10)), arr,
                                [[5, 3, 1, 4], []],
                                ((float(4), np.uint8(10), int(32), np.int16(55)),)):
            with self.assertRaises(TypeError, msg=get_no_exception_msg(not_convertible)):
                _ = cv.utils.dumpVectorOfRect(not_convertible)

    def test_vector_general_return(self):
        expected_number_of_mats = 5
        expected_shape = (10, 10, 3)
        expected_type = np.uint8
        mats = cv.utils.generateVectorOfMat(5, 10, 10, cv.CV_8UC3)
        self.assertTrue(isinstance(mats, tuple),
                        "Vector of Mats objects should be returned as tuple. Got: {}".format(type(mats)))
        self.assertEqual(len(mats), expected_number_of_mats, "Returned array has wrong length")
        for mat in mats:
            self.assertEqual(mat.shape, expected_shape, "Returned Mat has wrong shape")
            self.assertEqual(mat.dtype, expected_type, "Returned Mat has wrong elements type")
        empty_mats = cv.utils.generateVectorOfMat(0, 10, 10, cv.CV_32FC1)
        self.assertTrue(isinstance(empty_mats, tuple),
                        "Empty vector should be returned as empty tuple. Got: {}".format(type(mats)))
        self.assertEqual(len(empty_mats), 0, "Vector of size 0 should be returned as tuple of length 0")

    def test_vector_fast_return(self):
        expected_shape = (5, 4)
        rects = cv.utils.generateVectorOfRect(expected_shape[0])
        self.assertTrue(isinstance(rects, np.ndarray),
                        "Vector of rectangles should be returned as numpy array. Got: {}".format(type(rects)))
        self.assertEqual(rects.dtype, np.int32, "Vector of rectangles has wrong elements type")
        self.assertEqual(rects.shape, expected_shape, "Vector of rectangles has wrong shape")
        empty_rects = cv.utils.generateVectorOfRect(0)
        self.assertTrue(isinstance(empty_rects, tuple),
                        "Empty vector should be returned as empty tuple. Got: {}".format(type(empty_rects)))
        self.assertEqual(len(empty_rects), 0, "Vector of size 0 should be returned as tuple of length 0")

        expected_shape = (10,)
        ints = cv.utils.generateVectorOfInt(expected_shape[0])
        self.assertTrue(isinstance(ints, np.ndarray),
                        "Vector of integers should be returned as numpy array. Got: {}".format(type(ints)))
        self.assertEqual(ints.dtype, np.int32, "Vector of integers has wrong elements type")
        self.assertEqual(ints.shape, expected_shape, "Vector of integers has wrong shape.")

    def test_result_rotated_rect_issue_20930(self):
        rr = cv.utils.testRotatedRect(10, 20, 100, 200, 45)
        self.assertTrue(isinstance(rr, tuple), msg=type(rr))
        self.assertEqual(len(rr), 3)

        rrv = cv.utils.testRotatedRectVector(10, 20, 100, 200, 45)
        self.assertTrue(isinstance(rrv, tuple), msg=type(rrv))
        self.assertEqual(len(rrv), 10)

        rr = rrv[0]
        self.assertTrue(isinstance(rr, tuple), msg=type(rrv))
        self.assertEqual(len(rr), 3)

    def test_nested_function_availability(self):
        self.assertTrue(hasattr(cv.utils, "nested"),
                        msg="Module is not generated for nested namespace")
        self.assertTrue(hasattr(cv.utils.nested, "testEchoBooleanFunction"),
                        msg="Function in nested module is not available")

        if sys.version_info[0] < 3:
            # Nested submodule is managed only by the global submodules dictionary
            # and parent native module
            expected_ref_count = 2
        else:
            # Nested submodule is managed by the global submodules dictionary,
            # parent native module and Python part of the submodule
            expected_ref_count = 3

        # `getrefcount` temporary increases reference counter by 1
        actual_ref_count = sys.getrefcount(cv.utils.nested) - 1

        self.assertEqual(actual_ref_count, expected_ref_count,
                         msg="Nested submodule reference counter has wrong value\n"
                         "Expected: {}. Actual: {}".format(expected_ref_count, actual_ref_count))
        for flag in (True, False):
            self.assertEqual(flag, cv.utils.nested.testEchoBooleanFunction(flag),
                             msg="Function in nested module returns wrong result")

    def test_class_from_submodule_has_global_alias(self):
        self.assertTrue(hasattr(cv.ml, "Boost"),
                        msg="Class is not registered in the submodule")
        self.assertTrue(hasattr(cv, "ml_Boost"),
                        msg="Class from submodule doesn't have alias in the "
                        "global module")
        self.assertEqual(cv.ml.Boost, cv.ml_Boost,
                         msg="Classes from submodules and global module don't refer "
                         "to the same type")

    def test_inner_class_has_global_alias(self):
        self.assertTrue(hasattr(cv.SimpleBlobDetector, "Params"),
                        msg="Class is not registered as inner class")
        self.assertTrue(hasattr(cv, "SimpleBlobDetector_Params"),
                        msg="Inner class doesn't have alias in the global module")
        self.assertEqual(cv.SimpleBlobDetector.Params, cv.SimpleBlobDetector_Params,
                         msg="Inner class and class in global module don't refer "
                         "to the same type")

    def test_export_class_with_different_name(self):
        self.assertTrue(hasattr(cv.utils.nested, "ExportClassName"),
                        msg="Class with export alias is not registered in the submodule")
        self.assertTrue(hasattr(cv, "utils_nested_ExportClassName"),
                        msg="Class with export alias doesn't have alias in the "
                        "global module")
        self.assertEqual(cv.utils.nested.ExportClassName.originalName(), "OriginalClassName")

        instance = cv.utils.nested.ExportClassName.create()
        self.assertTrue(isinstance(instance, cv.utils.nested.ExportClassName),
                        msg="Factory function returns wrong class instance: {}".format(type(instance)))
        self.assertTrue(hasattr(cv.utils.nested, "ExportClassName_create"),
                        msg="Factory function should have alias in the same module as the class")
        # self.assertFalse(hasattr(cv.utils.nested, "OriginalClassName_create"),
        #                  msg="Factory function should not be registered with original class name, "\
        #                  "when class has different export name")

    def test_export_inner_class_of_class_exported_with_different_name(self):
        if not hasattr(cv.utils.nested, "ExportClassName"):
            raise unittest.SkipTest(
                "Outer class with export alias is not registered in the submodule")

        self.assertTrue(hasattr(cv.utils.nested.ExportClassName, "Params"),
                        msg="Inner class with export alias is not registered in "
                        "the outer class")
        self.assertTrue(hasattr(cv, "utils_nested_ExportClassName_Params"),
                        msg="Inner class with export alias is not registered in "
                        "global module")
        params = cv.utils.nested.ExportClassName.Params()
        params.int_value = 45
        params.float_value = 4.5

        instance = cv.utils.nested.ExportClassName.create(params)
        self.assertTrue(isinstance(instance, cv.utils.nested.ExportClassName),
                        msg="Factory function returns wrong class instance: {}".format(type(instance)))
        self.assertEqual(
            params.int_value, instance.getIntParam(),
            msg="Class initialized with wrong integer parameter. Expected: {}. Actual: {}".format(
                params.int_value, instance.getIntParam()
            )
        )
        self.assertEqual(
            params.float_value, instance.getFloatParam(),
            msg="Class initialized with wrong integer parameter. Expected: {}. Actual: {}".format(
                params.float_value, instance.getFloatParam()
            )
        )

    def test_named_arguments_without_parameters(self):
        src = np.ones((5, 5, 3), dtype=np.uint8)
        arguments_dump, src_copy = cv.utils.copyMatAndDumpNamedArguments(src)
        np.testing.assert_equal(src, src_copy)
        self.assertEqual(arguments_dump, 'lambda=-1, sigma=0.0')

    def test_named_arguments_without_output_argument(self):
        src = np.zeros((2, 2, 3), dtype=np.uint8)
        arguments_dump, src_copy = cv.utils.copyMatAndDumpNamedArguments(
            src, lambda_=15, sigma=3.5
        )
        np.testing.assert_equal(src, src_copy)
        self.assertEqual(arguments_dump, 'lambda=15, sigma=3.5')

    def test_named_arguments_with_output_argument(self):
        src = np.zeros((3, 3, 3), dtype=np.uint8)
        dst = np.ones_like(src)
        arguments_dump, src_copy = cv.utils.copyMatAndDumpNamedArguments(
            src, dst, lambda_=25, sigma=5.5
        )
        np.testing.assert_equal(src, src_copy)
        np.testing.assert_equal(dst, src_copy)
        self.assertEqual(arguments_dump, 'lambda=25, sigma=5.5')

    def test_arithm_op_without_saturation(self):
        np.random.seed(4231568)
        src = np.random.randint(20, 40, 8 * 4 * 3).astype(np.uint8).reshape(8, 4, 3)
        operations = get_ocv_arithm_op_table(apply_saturation=False)
        for ocv_op, numpy_op in operations.items():
            for val in (2, 4, (5, ), (6, 4), (2., 4., 1.),
                        np.uint8([1, 2, 2]), np.float64([5, 2, 6, 3]),):
                dst = ocv_op(src, val)
                expected = numpy_op(src, val)
                # Temporarily allows a difference of 1 for arm64 workaround.
                self.assertLess(np.max(np.abs(dst - expected)), 2,
                  msg="Operation '{}' is failed for {}".format(ocv_op.__name__, val ) )

    def test_arithm_op_with_saturation(self):
        np.random.seed(4231568)
        src = np.random.randint(20, 40, 4 * 8 * 4).astype(np.uint8).reshape(4, 8, 4)
        operations = get_ocv_arithm_op_table(apply_saturation=True)

        for ocv_op, numpy_op in operations.items():
            for val in (10, 4, (40, ), (15, 12), (25., 41., 15.),
                        np.uint8([1, 2, 20]), np.float64([50, 21, 64, 30]),):
                dst = ocv_op(src, val)
                expected = numpy_op(src, val)
                # Temporarily allows a difference of 1 for arm64 workaround.
                self.assertLess(np.max(np.abs(dst - expected)), 2,
                  msg="Saturated Operation '{}' is failed for {}".format(ocv_op.__name__, val ) )

class CanUsePurePythonModuleFunction(NewOpenCVTests):
    def test_can_get_ocv_version(self):
        import sys
        if sys.version_info[0] < 3:
            raise unittest.SkipTest('Python 2.x is not supported')

        self.assertEqual(cv.misc.get_ocv_version(), cv.__version__,
                         "Can't get package version using Python misc module")

    def test_native_method_can_be_patched(self):
        import sys

        if sys.version_info[0] < 3:
            raise unittest.SkipTest('Python 2.x is not supported')

        res = cv.utils.testOverwriteNativeMethod(10)
        self.assertTrue(isinstance(res, Sequence),
                        msg="Overwritten method should return sequence. "
                            "Got: {} of type {}".format(res, type(res)))
        self.assertSequenceEqual(res, (11, 10),
                                 msg="Failed to overwrite native method")
        res = cv.utils._native.testOverwriteNativeMethod(123)
        self.assertEqual(res, 123, msg="Failed to call native method implementation")

    def test_default_matx_argument(self):
        res = cv.utils.dumpVec2i()
        self.assertEqual(res, "Vec2i(42, 24)",
                         msg="Default argument is not properly handled")
        res = cv.utils.dumpVec2i((12, 21))
        self.assertEqual(res, "Vec2i(12, 21)")


class SamplesFindFile(NewOpenCVTests):

    def test_ExistedFile(self):
        res = cv.samples.findFile('lena.jpg', False)
        self.assertNotEqual(res, '')

    def test_MissingFile(self):
        res = cv.samples.findFile('non_existed.file', False)
        self.assertEqual(res, '')

    def test_MissingFileException(self):
        try:
            _res = cv.samples.findFile('non_existed.file', True)
            self.assertEqual("Dead code", 0)
        except cv.error as _e:
            pass


if __name__ == '__main__':
    NewOpenCVTests.bootstrap()