File: test_matchers.cpp

package info (click to toggle)
opencv 4.10.0%2Bdfsg-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 282,092 kB
  • sloc: cpp: 1,178,079; xml: 682,621; python: 49,092; lisp: 31,150; java: 25,469; ansic: 11,039; javascript: 6,085; sh: 1,214; cs: 601; perl: 494; objc: 210; makefile: 173
file content (143 lines) | stat: -rw-r--r-- 5,948 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                        Intel License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of Intel Corporation may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "test_precomp.hpp"

namespace opencv_test { namespace {

#if defined(HAVE_OPENCV_XFEATURES2D) && defined(OPENCV_ENABLE_NONFREE)

TEST(SurfFeaturesFinder, CanFindInROIs)
{
    Ptr<Feature2D> finder = xfeatures2d::SURF::create();
    Mat img  = imread(string(cvtest::TS::ptr()->get_data_path()) + "cv/shared/lena.png");

    vector<Rect> rois;
    rois.push_back(Rect(0, 0, img.cols / 2, img.rows / 2));
    rois.push_back(Rect(img.cols / 2, img.rows / 2, img.cols - img.cols / 2, img.rows - img.rows / 2));

    // construct mask
    Mat mask = Mat::zeros(img.size(), CV_8U);
    for (const Rect &roi : rois)
    {
        Mat(mask, roi) = 1;
    }

    detail::ImageFeatures roi_features;
    detail::computeImageFeatures(finder, img, roi_features, mask);

    int tl_rect_count = 0, br_rect_count = 0, bad_count = 0;
    for (const auto &keypoint : roi_features.keypoints)
    {
        if (rois[0].contains(keypoint.pt))
            tl_rect_count++;
        else if (rois[1].contains(keypoint.pt))
            br_rect_count++;
        else
            bad_count++;
    }

    EXPECT_GT(tl_rect_count, 0);
    EXPECT_GT(br_rect_count, 0);
    EXPECT_EQ(bad_count, 0);
}

#endif // HAVE_OPENCV_XFEATURES2D && OPENCV_ENABLE_NONFREE

TEST(ParallelFeaturesFinder, IsSameWithSerial)
{
    Ptr<Feature2D> para_finder = ORB::create();
    Ptr<Feature2D> serial_finder = ORB::create();
    Mat img  = imread(string(cvtest::TS::ptr()->get_data_path()) + "stitching/a3.png", IMREAD_GRAYSCALE);

    detail::ImageFeatures serial_features;
    detail::computeImageFeatures(serial_finder, img, serial_features);

    vector<Mat> imgs(50, img);
    vector<detail::ImageFeatures> para_features(imgs.size());
    detail::computeImageFeatures(para_finder, imgs, para_features);  // FIXIT This call doesn't use parallel_for_()

    // results must be the same
    Mat serial_descriptors;
    serial_features.descriptors.copyTo(serial_descriptors);
    for(size_t i = 0; i < para_features.size(); ++i)
    {
        SCOPED_TRACE(cv::format("i=%zu", i));
        EXPECT_EQ(serial_descriptors.size(), para_features[i].descriptors.size());
#if 0 // FIXIT ORB descriptors are not bit-exact (perhaps due internal parallel_for usage)
        ASSERT_EQ(0, cv::norm(u_serial_descriptors, para_features[i].descriptors, NORM_L1))
            << "serial_size=" << u_serial_descriptors.size()
            << " par_size=" << para_features[i].descriptors.size()
            << endl << u_serial_descriptors.getMat(ACCESS_READ)
            << endl << endl << para_features[i].descriptors.getMat(ACCESS_READ);
#endif
        EXPECT_EQ(serial_features.img_size, para_features[i].img_size);
        EXPECT_EQ(serial_features.keypoints.size(), para_features[i].keypoints.size());
    }
}

TEST(RangeMatcher, MatchesRangeOnly)
{
    Ptr<Feature2D> finder = ORB::create();

    Mat img0 = imread(string(cvtest::TS::ptr()->get_data_path()) + "stitching/a1.png", IMREAD_GRAYSCALE);
    Mat img1 = imread(string(cvtest::TS::ptr()->get_data_path()) + "stitching/a2.png", IMREAD_GRAYSCALE);
    Mat img2 = imread(string(cvtest::TS::ptr()->get_data_path()) + "stitching/a3.png", IMREAD_GRAYSCALE);

    vector<detail::ImageFeatures> features(3);

    computeImageFeatures(finder, img0, features[0]);
    computeImageFeatures(finder, img1, features[1]);
    computeImageFeatures(finder, img2, features[2]);

    vector<detail::MatchesInfo> pairwise_matches;
    Ptr<detail::FeaturesMatcher> matcher = makePtr<detail::BestOf2NearestRangeMatcher>(1);

    (*matcher)(features, pairwise_matches);

    // matches[1] will be image 0 and image 1, should have non-zero confidence
    EXPECT_NE(pairwise_matches[1].confidence, .0);

    // matches[2] will be image 0 and image 2, should have zero confidence due to range_width=1
    EXPECT_DOUBLE_EQ(pairwise_matches[2].confidence, .0);
}

}} // namespace