1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
|
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html
#include "opencv2/calib3d.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/imgproc.hpp"
#include <vector>
#include <iostream>
#include <fstream>
using namespace cv;
static double getError2EpipLines (const Mat &F, const Mat &pts1, const Mat &pts2, const Mat &mask) {
Mat points1, points2;
vconcat(pts1, Mat::ones(1, pts1.cols, pts1.type()), points1);
vconcat(pts2, Mat::ones(1, pts2.cols, pts2.type()), points2);
double mean_error = 0;
for (int pt = 0; pt < (int) mask.total(); pt++)
if (mask.at<uchar>(pt)) {
const Mat l2 = F * points1.col(pt);
const Mat l1 = F.t() * points2.col(pt);
mean_error += (fabs(points1.col(pt).dot(l1)) / sqrt(pow(l1.at<double>(0), 2) + pow(l1.at<double>(1), 2)) +
fabs(points2.col(pt).dot(l2) / sqrt(pow(l2.at<double>(0), 2) + pow(l2.at<double>(1), 2)))) / 2;
}
return mean_error / mask.total();
}
static int sgn(double val) { return (0 < val) - (val < 0); }
/*
* @points3d - vector of Point3 or Mat of size Nx3
* @planes - vector of found planes
* @labels - vector of size point3d. Every point which has non-zero label is classified to this plane.
*/
static void getPlanes (InputArray points3d_, std::vector<int> &labels, std::vector<Vec4d> &planes, int desired_num_planes, double thr_, double conf_, int max_iters_) {
Mat points3d = points3d_.getMat();
points3d.convertTo(points3d, CV_64F); // convert points to have double precision
if (points3d_.isVector())
points3d = Mat((int)points3d.total(), 3, CV_64F, points3d.data);
else {
if (points3d.type() != CV_64F)
points3d = points3d.reshape(1, (int)points3d.total()); // convert point to have 1 channel
if (points3d.rows < points3d.cols)
transpose(points3d, points3d); // transpose so points will be in rows
CV_CheckEQ(points3d.cols, 3, "Invalid dimension of point");
}
/*
* 3D plane fitting with RANSAC
* @best_model contains coefficients [a b c d] s.t. ax + by + cz = d
*
*/
auto plane_ransac = [] (const Mat &pts, double thr, double conf, int max_iters, Vec4d &best_model, std::vector<bool> &inliers) {
const int pts_size = pts.rows, max_lo_inliers = 15, max_lo_iters = 10;
int best_inls = 0;
if (pts_size < 3) return false;
RNG rng;
const auto * const points = (double *) pts.data;
std::vector<int> min_sample(3);
inliers = std::vector<bool>(pts_size);
const double log_conf = log(1-conf);
Vec4d model, lo_model;
std::vector<int> random_pool (pts_size);
for (int p = 0; p < pts_size; p++)
random_pool[p] = p;
// estimate plane coefficients using covariance matrix
auto estimate = [&] (const std::vector<int> &sample, Vec4d &model_) {
// https://www.ilikebigbits.com/2017_09_25_plane_from_points_2.html
const int n = static_cast<int>(sample.size());
if (n < 3) return false;
double sum_x = 0, sum_y = 0, sum_z = 0;
for (int s : sample) {
sum_x += points[3*s ];
sum_y += points[3*s+1];
sum_z += points[3*s+2];
}
const double c_x = sum_x / n, c_y = sum_y / n, c_z = sum_z / n;
double xx = 0, yy = 0, zz = 0, xy = 0, xz = 0, yz = 0;
for (int s : sample) {
const double x_ = points[3*s] - c_x, y_ = points[3*s+1] - c_y, z_ = points[3*s+2] - c_z;
xx += x_*x_; yy += y_*y_; zz += z_*z_; xy += x_*y_; yz += y_*z_; xz += x_*z_;
}
xx /= n; yy /= n; zz /= n; xy /= n; yz /= n; xz /= n;
Vec3d weighted_normal(0,0,0);
const double det_x = yy*zz - yz*yz, det_y = xx*zz - xz*xz, det_z = xx*yy - xy*xy;
Vec3d axis_x (det_x, xz*xz-xy*zz, xy*yz-xz*yy);
Vec3d axis_y (xz*yz-xy*zz, det_y, xy*xz-yz*xx);
Vec3d axis_z (xy*yz-xz*yy, xy*xz-yz*xx, det_z);
weighted_normal += axis_x * det_x * det_x;
weighted_normal += sgn(weighted_normal.dot(axis_y)) * axis_y * det_y * det_y;
weighted_normal += sgn(weighted_normal.dot(axis_z)) * axis_z * det_z * det_z;
weighted_normal /= norm(weighted_normal);
if (std::isinf(weighted_normal(0)) ||
std::isinf(weighted_normal(1)) ||
std::isinf(weighted_normal(2))) return false;
// find plane model from normal and centroid
model_ = Vec4d(weighted_normal(0), weighted_normal(1), weighted_normal(2),
weighted_normal.dot(Vec3d(c_x, c_y, c_z)));
return true;
};
// calculate number of inliers
auto getInliers = [&] (const Vec4d &model_) {
const double a = model_(0), b = model_(1), c = model_(2), d = model_(3);
int num_inliers = 0;
std::fill(inliers.begin(), inliers.end(), false);
for (int p = 0; p < pts_size; p++) {
inliers[p] = fabs(a * points[3*p] + b * points[3*p+1] + c * points[3*p+2] - d) < thr;
if (inliers[p]) num_inliers++;
if (num_inliers + pts_size - p < best_inls) break;
}
return num_inliers;
};
// main RANSAC loop
for (int iters = 0; iters < max_iters; iters++) {
// find minimal sample: 3 points
min_sample[0] = rng.uniform(0, pts_size);
min_sample[1] = rng.uniform(0, pts_size);
min_sample[2] = rng.uniform(0, pts_size);
if (! estimate(min_sample, model))
continue;
int num_inliers = getInliers(model);
if (num_inliers > best_inls) {
// store so-far-the-best
std::vector<bool> best_inliers = inliers;
// do Local Optimization
for (int lo_iter = 0; lo_iter < max_lo_iters; lo_iter++) {
std::vector<int> inliers_idx; inliers_idx.reserve(max_lo_inliers);
randShuffle(random_pool);
for (int p : random_pool) {
if (best_inliers[p]) {
inliers_idx.emplace_back(p);
if ((int)inliers_idx.size() >= max_lo_inliers)
break;
}
}
if (! estimate(inliers_idx, lo_model))
continue;
int lo_inls = getInliers(lo_model);
if (best_inls < lo_inls) {
best_model = lo_model;
best_inls = lo_inls;
best_inliers = inliers;
}
}
if (best_inls < num_inliers) {
best_model = model;
best_inls = num_inliers;
}
// update max iters
// because points are quite noisy we need more iterations
const double max_hyp = 3 * log_conf / log(1 - pow(double(best_inls) / pts_size, 3));
if (! std::isinf(max_hyp) && max_hyp < max_iters)
max_iters = static_cast<int>(max_hyp);
}
}
getInliers(best_model);
return best_inls != 0;
};
labels = std::vector<int>(points3d.rows, 0);
Mat pts3d_plane_fit = points3d.clone();
// keep array of indices of points corresponding to original points3d
std::vector<int> to_orig_pts_arr(pts3d_plane_fit.rows);
for (int i = 0; i < (int) to_orig_pts_arr.size(); i++)
to_orig_pts_arr[i] = i;
for (int num_planes = 1; num_planes <= desired_num_planes; num_planes++) {
Vec4d model;
std::vector<bool> inl;
if (!plane_ransac(pts3d_plane_fit, thr_, conf_, max_iters_, model, inl))
break;
planes.emplace_back(model);
const int pts3d_size = pts3d_plane_fit.rows;
pts3d_plane_fit = Mat();
pts3d_plane_fit.reserve(points3d.rows);
int cnt = 0;
for (int p = 0; p < pts3d_size; p++) {
if (! inl[p]) {
// if point is not inlier to found plane - add it to next run
to_orig_pts_arr[cnt] = to_orig_pts_arr[p];
pts3d_plane_fit.push_back(points3d.row(to_orig_pts_arr[cnt]));
cnt++;
} else labels[to_orig_pts_arr[p]] = num_planes; // otherwise label this point
}
}
}
int main(int args, char** argv) {
std::string data_file, image_dir;
if (args < 3) {
CV_Error(Error::StsBadArg,
"Path to data file and directory to image files are missing!\nData file must have"
" format:\n--------------\n image_name_1\nimage_name_2\nk11 k12 k13\n0 k22 k23\n"
"0 0 1\n--------------\nIf image_name_{1,2} are not in the same directory as "
"the data file then add argument with directory to image files.\nFor example: "
"./essential_mat_reconstr essential_mat_data.txt ./");
} else {
data_file = argv[1];
image_dir = argv[2];
}
std::ifstream file(data_file, std::ios_base::in);
CV_CheckEQ((int)file.is_open(), 1, "Data file is not found!");
std::string filename1, filename2;
std::getline(file, filename1);
std::getline(file, filename2);
Mat image1 = imread(image_dir+filename1);
Mat image2 = imread(image_dir+filename2);
CV_CheckEQ((int)image1.empty(), 0, "Image 1 is not found!");
CV_CheckEQ((int)image2.empty(), 0, "Image 2 is not found!");
// read calibration
Matx33d K;
for (int i = 0; i < 3; i++)
for (int j = 0; j < 3; j++)
file >> K(i,j);
file.close();
Mat descriptors1, descriptors2;
std::vector<KeyPoint> keypoints1, keypoints2;
// detect points with SIFT
Ptr<SIFT> detector = SIFT::create();
detector->detect(image1, keypoints1);
detector->detect(image2, keypoints2);
detector->compute(image1, keypoints1, descriptors1);
detector->compute(image2, keypoints2, descriptors2);
FlannBasedMatcher matcher(makePtr<flann::KDTreeIndexParams>(5), makePtr<flann::SearchParams>(32));
// get k=2 best match that we can apply ratio test explained by D.Lowe
std::vector<std::vector<DMatch>> matches_vector;
matcher.knnMatch(descriptors1, descriptors2, matches_vector, 2);
// filter keypoints with Lowe ratio test
std::vector<Point2d> pts1, pts2;
pts1.reserve(matches_vector.size()); pts2.reserve(matches_vector.size());
for (const auto &m : matches_vector) {
// compare best and second match using Lowe ratio test
if (m[0].distance / m[1].distance < 0.75) {
pts1.emplace_back(keypoints1[m[0].queryIdx].pt);
pts2.emplace_back(keypoints2[m[0].trainIdx].pt);
}
}
Mat inliers;
const int pts_size = (int) pts1.size();
const auto begin_time = std::chrono::steady_clock::now();
// fine essential matrix
const Mat E = findEssentialMat(pts1, pts2, Mat(K), RANSAC, 0.99, 1.0, inliers);
std::cout << "RANSAC essential matrix time " << std::chrono::duration_cast<std::chrono::microseconds>
(std::chrono::steady_clock::now() - begin_time).count() <<
"mcs.\nNumber of inliers " << countNonZero(inliers) << "\n";
Mat points1 = Mat((int)pts1.size(), 2, CV_64F, pts1.data());
Mat points2 = Mat((int)pts2.size(), 2, CV_64F, pts2.data());
points1 = points1.t(); points2 = points2.t();
std::cout << "Mean error to epipolar lines " <<
getError2EpipLines(K.inv().t() * E * K.inv(), points1, points2, inliers) << "\n";
// decompose essential into rotation and translation
Mat R1, R2, t;
decomposeEssentialMat(E, R1, R2, t);
// Create two relative pose
// P1 = K [ I | 0 ]
// P2 = K [R{1,2} | {+-}t]
Mat P1;
hconcat(K, Vec3d::zeros(), P1);
std::vector<Mat> P2s(4);
hconcat(K * R1, K * t, P2s[0]);
hconcat(K * R1, -K * t, P2s[1]);
hconcat(K * R2, K * t, P2s[2]);
hconcat(K * R2, -K * t, P2s[3]);
// find objects point by enumerating over 4 different projection matrices of second camera
// vector to keep object points
std::vector<std::vector<Vec3d>> obj_pts_per_cam(4);
// vector to keep indices of image points corresponding to object points
std::vector<std::vector<int>> img_idxs_per_cam(4);
int cam_idx = 0, best_cam_idx = 0, max_obj_pts = 0;
for (const auto &P2 : P2s) {
obj_pts_per_cam[cam_idx].reserve(pts_size);
img_idxs_per_cam[cam_idx].reserve(pts_size);
for (int i = 0; i < pts_size; i++) {
// process only inliers
if (! inliers.at<uchar>(i))
continue;
Vec4d obj_pt;
// find object point using triangulation
triangulatePoints(P1, P2, points1.col(i), points2.col(i), obj_pt);
obj_pt /= obj_pt(3); // normalize 4d point
if (obj_pt(2) > 0) { // check if projected point has positive depth
obj_pts_per_cam[cam_idx].emplace_back(Vec3d(obj_pt(0), obj_pt(1), obj_pt(2)));
img_idxs_per_cam[cam_idx].emplace_back(i);
}
}
if (max_obj_pts < (int) obj_pts_per_cam[cam_idx].size()) {
max_obj_pts = (int) obj_pts_per_cam[cam_idx].size();
best_cam_idx = cam_idx;
}
cam_idx++;
}
std::cout << "Number of object points " << max_obj_pts << "\n";
const int circle_sz = 7;
// draw image points that are inliers on two images
std::vector<int> labels;
std::vector<Vec4d> planes;
getPlanes (obj_pts_per_cam[best_cam_idx], labels, planes, 4, 0.002, 0.99, 10000);
const int num_found_planes = (int) planes.size();
RNG rng;
std::vector<Scalar> plane_colors (num_found_planes);
for (int pl = 0; pl < num_found_planes; pl++)
plane_colors[pl] = Scalar (rng.uniform(0,256), rng.uniform(0,256), rng.uniform(0,256));
for (int obj_pt = 0; obj_pt < max_obj_pts; obj_pt++) {
const int pt = img_idxs_per_cam[best_cam_idx][obj_pt];
if (labels[obj_pt] > 0) { // plot plane points
circle (image1, pts1[pt], circle_sz, plane_colors[labels[obj_pt]-1], -1);
circle (image2, pts2[pt], circle_sz, plane_colors[labels[obj_pt]-1], -1);
} else { // plot inliers
circle (image1, pts1[pt], circle_sz, Scalar(0,0,0), -1);
circle (image2, pts2[pt], circle_sz, Scalar(0,0,0), -1);
}
}
// concatenate two images
hconcat(image1, image2, image1);
const int new_img_size = 1200 * 800; // for example
// resize with the same aspect ratio
resize(image1, image1, Size((int)sqrt ((double) image1.cols * new_img_size / image1.rows),
(int)sqrt ((double) image1.rows * new_img_size / image1.cols)));
imshow("image 1-2", image1);
imwrite("planes.png", image1);
waitKey(0);
}
|