1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
|
#include <iostream>
#include <cmath>
#include <string>
#include <vector>
#include <queue>
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
using namespace cv;
struct Pix
{
Point next_point;
double cost;
bool operator > (const Pix &b) const
{
return cost > b.cost;
}
};
struct Parameters
{
Mat img, img_pre_render, img_render;
Point end;
std::vector<std::vector<Point> > contours;
std::vector<Point> tmp_contour;
Mat zero_crossing, gradient_magnitude, Ix, Iy, hit_map_x, hit_map_y;
};
static float local_cost(const Point& p, const Point& q, const Mat& gradient_magnitude, const Mat& Iy, const Mat& Ix, const Mat& zero_crossing)
{
float fG = gradient_magnitude.at<float>(q.y, q.x);
float dp;
float dq;
const float WEIGHT_LAP_ZERO_CROSS = 0.43f;
const float WEIGHT_GRADIENT_MAGNITUDE = 0.14f;
const float WEIGHT_GRADIENT_DIRECTION = 0.43f;
bool isDiag = (p.x != q.x) && (p.y != q.y);
if ((Iy.at<float>(p) * (q.x - p.x) - Ix.at<float>(p) * (q.y - p.y)) >= 0)
{
dp = Iy.at<float>(p) * (q.x - p.x) - Ix.at<float>(p) * (q.y - p.y);
dq = Iy.at<float>(q) * (q.x - p.x) - Ix.at<float>(q) * (q.y - p.y);
}
else
{
dp = Iy.at<float>(p) * (p.x - q.x) + (-Ix.at<float>(p)) * (p.y - q.y);
dq = Iy.at<float>(q) * (p.x - q.x) + (-Ix.at<float>(q)) * (p.y - q.y);
}
if (isDiag)
{
dp /= sqrtf(2);
dq /= sqrtf(2);
}
else
{
fG /= sqrtf(2);
}
return WEIGHT_LAP_ZERO_CROSS * zero_crossing.at<uchar>(q) +
WEIGHT_GRADIENT_DIRECTION * (acosf(dp) + acosf(dq)) / static_cast<float>(CV_PI) +
WEIGHT_GRADIENT_MAGNITUDE * fG;
}
static void find_min_path(const Point& start, Parameters* param)
{
Pix begin;
Mat &img = param->img;
Mat cost_map(img.size(), CV_32F, Scalar(FLT_MAX));
Mat expand(img.size(), CV_8UC1, Scalar(0));
Mat processed(img.size(), CV_8UC1, Scalar(0));
Mat removed(img.size(), CV_8UC1, Scalar(0));
std::priority_queue < Pix, std::vector<Pix>, std::greater<Pix> > L;
cost_map.at<float>(start) = 0;
processed.at<uchar>(start) = 1;
begin.cost = 0;
begin.next_point = start;
L.push(begin);
while (!L.empty())
{
Pix P = L.top();
L.pop();
Point p = P.next_point;
processed.at<uchar>(p) = 0;
if (removed.at<uchar>(p) == 0)
{
expand.at<uchar>(p) = 1;
for (int i = -1; i <= 1; i++)
{
for(int j = -1; j <= 1; j++)
{
int tx = p.x + i;
int ty = p.y + j;
if (tx < 0 || tx >= img.cols || ty < 0 || ty >= img.rows)
continue;
if (expand.at<uchar>(ty, tx) == 0)
{
Point q = Point(tx, ty);
float cost = cost_map.at<float>(p) + local_cost(p, q, param->gradient_magnitude, param->Iy, param->Ix, param->zero_crossing);
if (processed.at<uchar>(q) == 1 && cost < cost_map.at<float>(q))
{
removed.at<uchar>(q) = 1;
}
if (processed.at<uchar>(q) == 0)
{
cost_map.at<float>(q) = cost;
param->hit_map_x.at<int>(q)= p.x;
param->hit_map_y.at<int>(q) = p.y;
processed.at<uchar>(q) = 1;
Pix val;
val.cost = cost_map.at<float>(q);
val.next_point = q;
L.push(val);
}
}
}
}
}
}
}
static void onMouse(int event, int x, int y, int , void* userdata)
{
Parameters* param = reinterpret_cast<Parameters*>(userdata);
Point &end = param->end;
std::vector<std::vector<Point> > &contours = param->contours;
std::vector<Point> &tmp_contour = param->tmp_contour;
Mat &img_render = param->img_render;
Mat &img_pre_render = param->img_pre_render;
if (event == EVENT_LBUTTONDOWN)
{
end = Point(x, y);
if (!contours.back().empty())
{
for (int i = static_cast<int>(tmp_contour.size()) - 1; i >= 0; i--)
{
contours.back().push_back(tmp_contour[i]);
}
tmp_contour.clear();
}
else
{
contours.back().push_back(end);
}
find_min_path(end, param);
img_render.copyTo(img_pre_render);
imshow("lasso", img_render);
}
else if (event == EVENT_RBUTTONDOWN)
{
img_pre_render.copyTo(img_render);
drawContours(img_pre_render, contours, static_cast<int>(contours.size()) - 1, Scalar(0,255,0), FILLED);
addWeighted(img_pre_render, 0.3, img_render, 0.7, 0, img_render);
contours.resize(contours.size() + 1);
imshow("lasso", img_render);
}
else if (event == EVENT_MOUSEMOVE && !contours.back().empty())
{
tmp_contour.clear();
img_pre_render.copyTo(img_render);
Point val_point = Point(x, y);
while (val_point != end)
{
tmp_contour.push_back(val_point);
Point cur = Point(param->hit_map_x.at<int>(val_point), param->hit_map_y.at<int>(val_point));
line(img_render, val_point, cur, Scalar(255, 0, 0), 2);
val_point = cur;
}
imshow("lasso", img_render);
}
}
const char* keys =
{
"{help h | |}"
"{@image | fruits.jpg| Path to image to process}"
};
int main( int argc, const char** argv )
{
Parameters param;
const int EDGE_THRESHOLD_LOW = 50;
const int EDGE_THRESHOLD_HIGH = 100;
CommandLineParser parser(argc, argv, keys);
parser.about("\nThis program demonstrates implementation of 'Intelligent Scissors' algorithm designed\n"
"by Eric N. Mortensen and William A. Barrett, and described in article\n"
"'Intelligent Scissors for Image Composition':\n"
"http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.138.3811&rep=rep1&type=pdf\n"
"To start drawing a new contour select a pixel, click LEFT mouse button.\n"
"To fix a path click LEFT mouse button again.\n"
"To finish drawing a contour click RIGHT mouse button.\n");
if (parser.has("help"))
{
parser.printMessage();
return 1;
}
std::vector<std::vector<Point> > c(1);
param.contours = c;
std::string filename = parser.get<std::string>(0);
Mat grayscale, img_canny;
param.img = imread(samples::findFile(filename));
param.hit_map_x.create(param.img.rows, param.img.cols, CV_32SC1);
param.hit_map_y.create(param.img.rows, param.img.cols, CV_32SC1);
cvtColor(param.img, grayscale, COLOR_BGR2GRAY);
Canny(grayscale, img_canny, EDGE_THRESHOLD_LOW, EDGE_THRESHOLD_HIGH);
threshold(img_canny, param.zero_crossing, 254, 1, THRESH_BINARY_INV);
Sobel(grayscale, param.Ix, CV_32FC1, 1, 0, 1);
Sobel(grayscale, param.Iy, CV_32FC1, 0, 1, 1);
param.Ix.convertTo(param.Ix, CV_32F, 1.0/255);
param.Iy.convertTo(param.Iy, CV_32F, 1.0/255);
// Compute gradients magnitude.
double max_val = 0.0;
magnitude(param.Iy, param.Ix, param.gradient_magnitude);
minMaxLoc(param.gradient_magnitude, 0, &max_val);
param.gradient_magnitude.convertTo(param.gradient_magnitude, CV_32F, -1/max_val, 1.0);
param.img.copyTo(param.img_pre_render);
param.img.copyTo(param.img_render);
namedWindow("lasso");
setMouseCallback("lasso", onMouse, ¶m);
imshow("lasso", param.img);
waitKey(0);
}
|