1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
|
/**
* @file HoughLines_Demo.cpp
* @brief Demo code for Hough Transform
* @author OpenCV team
*/
#include "opencv2/imgcodecs.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/imgproc.hpp"
#include <iostream>
using namespace cv;
using namespace std;
/// Global variables
/** General variables */
Mat src, edges;
Mat src_gray;
Mat standard_hough, probabilistic_hough;
int min_threshold = 50;
int max_trackbar = 150;
const char* standard_name = "Standard Hough Lines Demo";
const char* probabilistic_name = "Probabilistic Hough Lines Demo";
int s_trackbar = max_trackbar;
int p_trackbar = max_trackbar;
/// Function Headers
void help();
void Standard_Hough( int, void* );
void Probabilistic_Hough( int, void* );
/**
* @function main
*/
int main( int argc, char** argv )
{
// Read the image
String imageName("building.jpg"); // by default
if (argc > 1)
{
imageName = argv[1];
}
src = imread( samples::findFile( imageName ), IMREAD_COLOR );
if( src.empty() )
{ help();
return -1;
}
/// Pass the image to gray
cvtColor( src, src_gray, COLOR_RGB2GRAY );
/// Apply Canny edge detector
Canny( src_gray, edges, 50, 200, 3 );
/// Create Trackbars for Thresholds
char thresh_label[50];
snprintf( thresh_label, sizeof(thresh_label), "Thres: %d + input", min_threshold );
namedWindow( standard_name, WINDOW_AUTOSIZE );
createTrackbar( thresh_label, standard_name, &s_trackbar, max_trackbar, Standard_Hough);
namedWindow( probabilistic_name, WINDOW_AUTOSIZE );
createTrackbar( thresh_label, probabilistic_name, &p_trackbar, max_trackbar, Probabilistic_Hough);
/// Initialize
Standard_Hough(0, 0);
Probabilistic_Hough(0, 0);
waitKey(0);
return 0;
}
/**
* @function help
* @brief Indications of how to run this program and why is it for
*/
void help()
{
printf("\t Hough Transform to detect lines \n ");
printf("\t---------------------------------\n ");
printf(" Usage: ./HoughLines_Demo <image_name> \n");
}
/**
* @function Standard_Hough
*/
void Standard_Hough( int, void* )
{
vector<Vec2f> s_lines;
cvtColor( edges, standard_hough, COLOR_GRAY2BGR );
/// 1. Use Standard Hough Transform
HoughLines( edges, s_lines, 1, CV_PI/180, min_threshold + s_trackbar, 0, 0 );
/// Show the result
for( size_t i = 0; i < s_lines.size(); i++ )
{
float r = s_lines[i][0], t = s_lines[i][1];
double cos_t = cos(t), sin_t = sin(t);
double x0 = r*cos_t, y0 = r*sin_t;
double alpha = 1000;
Point pt1( cvRound(x0 + alpha*(-sin_t)), cvRound(y0 + alpha*cos_t) );
Point pt2( cvRound(x0 - alpha*(-sin_t)), cvRound(y0 - alpha*cos_t) );
line( standard_hough, pt1, pt2, Scalar(255,0,0), 3, LINE_AA);
}
imshow( standard_name, standard_hough );
}
/**
* @function Probabilistic_Hough
*/
void Probabilistic_Hough( int, void* )
{
vector<Vec4i> p_lines;
cvtColor( edges, probabilistic_hough, COLOR_GRAY2BGR );
/// 2. Use Probabilistic Hough Transform
HoughLinesP( edges, p_lines, 1, CV_PI/180, min_threshold + p_trackbar, 30, 10 );
/// Show the result
for( size_t i = 0; i < p_lines.size(); i++ )
{
Vec4i l = p_lines[i];
line( probabilistic_hough, Point(l[0], l[1]), Point(l[2], l[3]), Scalar(255,0,0), 3, LINE_AA);
}
imshow( probabilistic_name, probabilistic_hough );
}
|