1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
|
#include <iostream>
#include <sstream>
#include <string>
#include <ctime>
#include <cstdio>
#include <opencv2/core.hpp>
#include <opencv2/core/utility.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/calib3d.hpp>
#include <opencv2/imgcodecs.hpp>
#include <opencv2/videoio.hpp>
#include <opencv2/highgui.hpp>
#include "opencv2/objdetect/charuco_detector.hpp"
using namespace cv;
using namespace std;
class Settings
{
public:
Settings() : goodInput(false) {}
enum Pattern { NOT_EXISTING, CHESSBOARD, CHARUCOBOARD, CIRCLES_GRID, ASYMMETRIC_CIRCLES_GRID };
enum InputType { INVALID, CAMERA, VIDEO_FILE, IMAGE_LIST };
void write(FileStorage& fs) const //Write serialization for this class
{
fs << "{"
<< "BoardSize_Width" << boardSize.width
<< "BoardSize_Height" << boardSize.height
<< "Square_Size" << squareSize
<< "Marker_Size" << markerSize
<< "Calibrate_Pattern" << patternToUse
<< "ArUco_Dict_Name" << arucoDictName
<< "ArUco_Dict_File_Name" << arucoDictFileName
<< "Calibrate_NrOfFrameToUse" << nrFrames
<< "Calibrate_FixAspectRatio" << aspectRatio
<< "Calibrate_AssumeZeroTangentialDistortion" << calibZeroTangentDist
<< "Calibrate_FixPrincipalPointAtTheCenter" << calibFixPrincipalPoint
<< "Write_DetectedFeaturePoints" << writePoints
<< "Write_extrinsicParameters" << writeExtrinsics
<< "Write_gridPoints" << writeGrid
<< "Write_outputFileName" << outputFileName
<< "Show_UndistortedImage" << showUndistorted
<< "Input_FlipAroundHorizontalAxis" << flipVertical
<< "Input_Delay" << delay
<< "Input" << input
<< "}";
}
void read(const FileNode& node) //Read serialization for this class
{
node["BoardSize_Width"] >> boardSize.width;
node["BoardSize_Height"] >> boardSize.height;
node["Calibrate_Pattern"] >> patternToUse;
node["ArUco_Dict_Name"] >> arucoDictName;
node["ArUco_Dict_File_Name"] >> arucoDictFileName;
node["Square_Size"] >> squareSize;
node["Marker_Size"] >> markerSize;
node["Calibrate_NrOfFrameToUse"] >> nrFrames;
node["Calibrate_FixAspectRatio"] >> aspectRatio;
node["Write_DetectedFeaturePoints"] >> writePoints;
node["Write_extrinsicParameters"] >> writeExtrinsics;
node["Write_gridPoints"] >> writeGrid;
node["Write_outputFileName"] >> outputFileName;
node["Calibrate_AssumeZeroTangentialDistortion"] >> calibZeroTangentDist;
node["Calibrate_FixPrincipalPointAtTheCenter"] >> calibFixPrincipalPoint;
node["Calibrate_UseFisheyeModel"] >> useFisheye;
node["Input_FlipAroundHorizontalAxis"] >> flipVertical;
node["Show_UndistortedImage"] >> showUndistorted;
node["Input"] >> input;
node["Input_Delay"] >> delay;
node["Fix_K1"] >> fixK1;
node["Fix_K2"] >> fixK2;
node["Fix_K3"] >> fixK3;
node["Fix_K4"] >> fixK4;
node["Fix_K5"] >> fixK5;
validate();
}
void validate()
{
goodInput = true;
if (boardSize.width <= 0 || boardSize.height <= 0)
{
cerr << "Invalid Board size: " << boardSize.width << " " << boardSize.height << endl;
goodInput = false;
}
if (squareSize <= 10e-6)
{
cerr << "Invalid square size " << squareSize << endl;
goodInput = false;
}
if (nrFrames <= 0)
{
cerr << "Invalid number of frames " << nrFrames << endl;
goodInput = false;
}
if (input.empty()) // Check for valid input
inputType = INVALID;
else
{
if (input[0] >= '0' && input[0] <= '9')
{
stringstream ss(input);
ss >> cameraID;
inputType = CAMERA;
}
else
{
if (isListOfImages(input) && readStringList(input, imageList))
{
inputType = IMAGE_LIST;
nrFrames = (nrFrames < (int)imageList.size()) ? nrFrames : (int)imageList.size();
}
else
inputType = VIDEO_FILE;
}
if (inputType == CAMERA)
inputCapture.open(cameraID);
if (inputType == VIDEO_FILE)
inputCapture.open(input);
if (inputType != IMAGE_LIST && !inputCapture.isOpened())
inputType = INVALID;
}
if (inputType == INVALID)
{
cerr << " Input does not exist: " << input;
goodInput = false;
}
flag = 0;
if(calibFixPrincipalPoint) flag |= CALIB_FIX_PRINCIPAL_POINT;
if(calibZeroTangentDist) flag |= CALIB_ZERO_TANGENT_DIST;
if(aspectRatio) flag |= CALIB_FIX_ASPECT_RATIO;
if(fixK1) flag |= CALIB_FIX_K1;
if(fixK2) flag |= CALIB_FIX_K2;
if(fixK3) flag |= CALIB_FIX_K3;
if(fixK4) flag |= CALIB_FIX_K4;
if(fixK5) flag |= CALIB_FIX_K5;
if (useFisheye) {
// the fisheye model has its own enum, so overwrite the flags
flag = fisheye::CALIB_FIX_SKEW | fisheye::CALIB_RECOMPUTE_EXTRINSIC;
if(fixK1) flag |= fisheye::CALIB_FIX_K1;
if(fixK2) flag |= fisheye::CALIB_FIX_K2;
if(fixK3) flag |= fisheye::CALIB_FIX_K3;
if(fixK4) flag |= fisheye::CALIB_FIX_K4;
if (calibFixPrincipalPoint) flag |= fisheye::CALIB_FIX_PRINCIPAL_POINT;
}
calibrationPattern = NOT_EXISTING;
if (!patternToUse.compare("CHESSBOARD")) calibrationPattern = CHESSBOARD;
if (!patternToUse.compare("CHARUCOBOARD")) calibrationPattern = CHARUCOBOARD;
if (!patternToUse.compare("CIRCLES_GRID")) calibrationPattern = CIRCLES_GRID;
if (!patternToUse.compare("ASYMMETRIC_CIRCLES_GRID")) calibrationPattern = ASYMMETRIC_CIRCLES_GRID;
if (calibrationPattern == NOT_EXISTING)
{
cerr << " Camera calibration mode does not exist: " << patternToUse << endl;
goodInput = false;
}
atImageList = 0;
}
Mat nextImage()
{
Mat result;
if( inputCapture.isOpened() )
{
Mat view0;
inputCapture >> view0;
view0.copyTo(result);
}
else if( atImageList < imageList.size() )
result = imread(imageList[atImageList++], IMREAD_COLOR);
return result;
}
static bool readStringList( const string& filename, vector<string>& l )
{
l.clear();
FileStorage fs(filename, FileStorage::READ);
if( !fs.isOpened() )
return false;
FileNode n = fs.getFirstTopLevelNode();
if( n.type() != FileNode::SEQ )
return false;
FileNodeIterator it = n.begin(), it_end = n.end();
for( ; it != it_end; ++it )
l.push_back((string)*it);
return true;
}
static bool isListOfImages( const string& filename)
{
string s(filename);
// Look for file extension
if( s.find(".xml") == string::npos && s.find(".yaml") == string::npos && s.find(".yml") == string::npos )
return false;
else
return true;
}
public:
Size boardSize; // The size of the board -> Number of items by width and height
Pattern calibrationPattern; // One of the Chessboard, ChArUco board, circles, or asymmetric circle pattern
float squareSize; // The size of a square in your defined unit (point, millimeter,etc).
float markerSize; // The size of a marker in your defined unit (point, millimeter,etc).
string arucoDictName; // The Name of ArUco dictionary which you use in ChArUco pattern
string arucoDictFileName; // The Name of file which contains ArUco dictionary for ChArUco pattern
int nrFrames; // The number of frames to use from the input for calibration
float aspectRatio; // The aspect ratio
int delay; // In case of a video input
bool writePoints; // Write detected feature points
bool writeExtrinsics; // Write extrinsic parameters
bool writeGrid; // Write refined 3D target grid points
bool calibZeroTangentDist; // Assume zero tangential distortion
bool calibFixPrincipalPoint; // Fix the principal point at the center
bool flipVertical; // Flip the captured images around the horizontal axis
string outputFileName; // The name of the file where to write
bool showUndistorted; // Show undistorted images after calibration
string input; // The input ->
bool useFisheye; // use fisheye camera model for calibration
bool fixK1; // fix K1 distortion coefficient
bool fixK2; // fix K2 distortion coefficient
bool fixK3; // fix K3 distortion coefficient
bool fixK4; // fix K4 distortion coefficient
bool fixK5; // fix K5 distortion coefficient
int cameraID;
vector<string> imageList;
size_t atImageList;
VideoCapture inputCapture;
InputType inputType;
bool goodInput;
int flag;
private:
string patternToUse;
};
static inline void read(const FileNode& node, Settings& x, const Settings& default_value = Settings())
{
if(node.empty())
x = default_value;
else
x.read(node);
}
enum { DETECTION = 0, CAPTURING = 1, CALIBRATED = 2 };
bool runCalibrationAndSave(Settings& s, Size imageSize, Mat& cameraMatrix, Mat& distCoeffs,
vector<vector<Point2f> > imagePoints, float grid_width, bool release_object);
int main(int argc, char* argv[])
{
const String keys
= "{help h usage ? | | print this message }"
"{@settings |default.xml| input setting file }"
"{d | | actual distance between top-left and top-right corners of "
"the calibration grid }"
"{winSize | 11 | Half of search window for cornerSubPix }";
CommandLineParser parser(argc, argv, keys);
parser.about("This is a camera calibration sample.\n"
"Usage: camera_calibration [configuration_file -- default ./default.xml]\n"
"Near the sample file you'll find the configuration file, which has detailed help of "
"how to edit it. It may be any OpenCV supported file format XML/YAML.");
if (!parser.check()) {
parser.printErrors();
return 0;
}
if (parser.has("help")) {
parser.printMessage();
return 0;
}
//! [file_read]
Settings s;
const string inputSettingsFile = parser.get<string>(0);
FileStorage fs(inputSettingsFile, FileStorage::READ); // Read the settings
if (!fs.isOpened())
{
cout << "Could not open the configuration file: \"" << inputSettingsFile << "\"" << endl;
parser.printMessage();
return -1;
}
fs["Settings"] >> s;
fs.release(); // close Settings file
//! [file_read]
if (!s.goodInput)
{
cout << "Invalid input detected. Application stopping. " << endl;
return -1;
}
int winSize = parser.get<int>("winSize");
float grid_width = s.squareSize * (s.boardSize.width - 1);
if (s.calibrationPattern == Settings::Pattern::CHARUCOBOARD) {
grid_width = s.squareSize * (s.boardSize.width - 2);
}
bool release_object = false;
if (parser.has("d")) {
grid_width = parser.get<float>("d");
release_object = true;
}
//create CharucoBoard
cv::aruco::Dictionary dictionary;
if (s.calibrationPattern == Settings::CHARUCOBOARD) {
if (s.arucoDictFileName == "") {
cv::aruco::PredefinedDictionaryType arucoDict;
if (s.arucoDictName == "DICT_4X4_50") { arucoDict = cv::aruco::DICT_4X4_50; }
else if (s.arucoDictName == "DICT_4X4_100") { arucoDict = cv::aruco::DICT_4X4_100; }
else if (s.arucoDictName == "DICT_4X4_250") { arucoDict = cv::aruco::DICT_4X4_250; }
else if (s.arucoDictName == "DICT_4X4_1000") { arucoDict = cv::aruco::DICT_4X4_1000; }
else if (s.arucoDictName == "DICT_5X5_50") { arucoDict = cv::aruco::DICT_5X5_50; }
else if (s.arucoDictName == "DICT_5X5_100") { arucoDict = cv::aruco::DICT_5X5_100; }
else if (s.arucoDictName == "DICT_5X5_250") { arucoDict = cv::aruco::DICT_5X5_250; }
else if (s.arucoDictName == "DICT_5X5_1000") { arucoDict = cv::aruco::DICT_5X5_1000; }
else if (s.arucoDictName == "DICT_6X6_50") { arucoDict = cv::aruco::DICT_6X6_50; }
else if (s.arucoDictName == "DICT_6X6_100") { arucoDict = cv::aruco::DICT_6X6_100; }
else if (s.arucoDictName == "DICT_6X6_250") { arucoDict = cv::aruco::DICT_6X6_250; }
else if (s.arucoDictName == "DICT_6X6_1000") { arucoDict = cv::aruco::DICT_6X6_1000; }
else if (s.arucoDictName == "DICT_7X7_50") { arucoDict = cv::aruco::DICT_7X7_50; }
else if (s.arucoDictName == "DICT_7X7_100") { arucoDict = cv::aruco::DICT_7X7_100; }
else if (s.arucoDictName == "DICT_7X7_250") { arucoDict = cv::aruco::DICT_7X7_250; }
else if (s.arucoDictName == "DICT_7X7_1000") { arucoDict = cv::aruco::DICT_7X7_1000; }
else if (s.arucoDictName == "DICT_ARUCO_ORIGINAL") { arucoDict = cv::aruco::DICT_ARUCO_ORIGINAL; }
else if (s.arucoDictName == "DICT_APRILTAG_16h5") { arucoDict = cv::aruco::DICT_APRILTAG_16h5; }
else if (s.arucoDictName == "DICT_APRILTAG_25h9") { arucoDict = cv::aruco::DICT_APRILTAG_25h9; }
else if (s.arucoDictName == "DICT_APRILTAG_36h10") { arucoDict = cv::aruco::DICT_APRILTAG_36h10; }
else if (s.arucoDictName == "DICT_APRILTAG_36h11") { arucoDict = cv::aruco::DICT_APRILTAG_36h11; }
else {
cout << "incorrect name of aruco dictionary \n";
return 1;
}
dictionary = cv::aruco::getPredefinedDictionary(arucoDict);
}
else {
cv::FileStorage dict_file(s.arucoDictFileName, cv::FileStorage::Mode::READ);
cv::FileNode fn(dict_file.root());
dictionary.readDictionary(fn);
}
}
else {
// default dictionary
dictionary = cv::aruco::getPredefinedDictionary(cv::aruco::DICT_4X4_50);
}
cv::aruco::CharucoBoard ch_board({s.boardSize.width, s.boardSize.height}, s.squareSize, s.markerSize, dictionary);
cv::aruco::CharucoDetector ch_detector(ch_board);
std::vector<int> markerIds;
vector<vector<Point2f> > imagePoints;
Mat cameraMatrix, distCoeffs;
Size imageSize;
int mode = s.inputType == Settings::IMAGE_LIST ? CAPTURING : DETECTION;
clock_t prevTimestamp = 0;
const Scalar RED(0,0,255), GREEN(0,255,0);
const char ESC_KEY = 27;
//! [get_input]
for(;;)
{
Mat view;
bool blinkOutput = false;
view = s.nextImage();
//----- If no more image, or got enough, then stop calibration and show result -------------
if( mode == CAPTURING && imagePoints.size() >= (size_t)s.nrFrames )
{
if(runCalibrationAndSave(s, imageSize, cameraMatrix, distCoeffs, imagePoints, grid_width,
release_object))
mode = CALIBRATED;
else
mode = DETECTION;
}
if(view.empty()) // If there are no more images stop the loop
{
// if calibration threshold was not reached yet, calibrate now
if( mode != CALIBRATED && !imagePoints.empty() )
runCalibrationAndSave(s, imageSize, cameraMatrix, distCoeffs, imagePoints, grid_width,
release_object);
break;
}
//! [get_input]
imageSize = view.size(); // Format input image.
if( s.flipVertical ) flip( view, view, 0 );
//! [find_pattern]
vector<Point2f> pointBuf;
bool found;
int chessBoardFlags = CALIB_CB_ADAPTIVE_THRESH | CALIB_CB_NORMALIZE_IMAGE;
if(!s.useFisheye) {
// fast check erroneously fails with high distortions like fisheye
chessBoardFlags |= CALIB_CB_FAST_CHECK;
}
switch( s.calibrationPattern ) // Find feature points on the input format
{
case Settings::CHESSBOARD:
found = findChessboardCorners( view, s.boardSize, pointBuf, chessBoardFlags);
break;
case Settings::CHARUCOBOARD:
ch_detector.detectBoard( view, pointBuf, markerIds);
found = pointBuf.size() == (size_t)((s.boardSize.height - 1)*(s.boardSize.width - 1));
break;
case Settings::CIRCLES_GRID:
found = findCirclesGrid( view, s.boardSize, pointBuf );
break;
case Settings::ASYMMETRIC_CIRCLES_GRID:
found = findCirclesGrid( view, s.boardSize, pointBuf, CALIB_CB_ASYMMETRIC_GRID );
break;
default:
found = false;
break;
}
//! [find_pattern]
//! [pattern_found]
if (found) // If done with success,
{
// improve the found corners' coordinate accuracy for chessboard
if( s.calibrationPattern == Settings::CHESSBOARD)
{
Mat viewGray;
cvtColor(view, viewGray, COLOR_BGR2GRAY);
cornerSubPix( viewGray, pointBuf, Size(winSize,winSize),
Size(-1,-1), TermCriteria( TermCriteria::EPS+TermCriteria::COUNT, 30, 0.0001 ));
}
if( mode == CAPTURING && // For camera only take new samples after delay time
(!s.inputCapture.isOpened() || clock() - prevTimestamp > s.delay*1e-3*CLOCKS_PER_SEC) )
{
imagePoints.push_back(pointBuf);
prevTimestamp = clock();
blinkOutput = s.inputCapture.isOpened();
}
// Draw the corners.
if(s.calibrationPattern == Settings::CHARUCOBOARD)
drawChessboardCorners( view, cv::Size(s.boardSize.width-1, s.boardSize.height-1), Mat(pointBuf), found );
else
drawChessboardCorners( view, s.boardSize, Mat(pointBuf), found );
}
//! [pattern_found]
//----------------------------- Output Text ------------------------------------------------
//! [output_text]
string msg = (mode == CAPTURING) ? "100/100" :
mode == CALIBRATED ? "Calibrated" : "Press 'g' to start";
int baseLine = 0;
Size textSize = getTextSize(msg, 1, 1, 1, &baseLine);
Point textOrigin(view.cols - 2*textSize.width - 10, view.rows - 2*baseLine - 10);
if( mode == CAPTURING )
{
if(s.showUndistorted)
msg = cv::format( "%d/%d Undist", (int)imagePoints.size(), s.nrFrames );
else
msg = cv::format( "%d/%d", (int)imagePoints.size(), s.nrFrames );
}
putText( view, msg, textOrigin, 1, 1, mode == CALIBRATED ? GREEN : RED);
if( blinkOutput )
bitwise_not(view, view);
//! [output_text]
//------------------------- Video capture output undistorted ------------------------------
//! [output_undistorted]
if( mode == CALIBRATED && s.showUndistorted )
{
Mat temp = view.clone();
if (s.useFisheye)
{
Mat newCamMat;
fisheye::estimateNewCameraMatrixForUndistortRectify(cameraMatrix, distCoeffs, imageSize,
Matx33d::eye(), newCamMat, 1);
cv::fisheye::undistortImage(temp, view, cameraMatrix, distCoeffs, newCamMat);
}
else
undistort(temp, view, cameraMatrix, distCoeffs);
}
//! [output_undistorted]
//------------------------------ Show image and check for input commands -------------------
//! [await_input]
imshow("Image View", view);
char key = (char)waitKey(s.inputCapture.isOpened() ? 50 : s.delay);
if( key == ESC_KEY )
break;
if( key == 'u' && mode == CALIBRATED )
s.showUndistorted = !s.showUndistorted;
if( s.inputCapture.isOpened() && key == 'g' )
{
mode = CAPTURING;
imagePoints.clear();
}
//! [await_input]
}
// -----------------------Show the undistorted image for the image list ------------------------
//! [show_results]
if( s.inputType == Settings::IMAGE_LIST && s.showUndistorted && !cameraMatrix.empty())
{
Mat view, rview, map1, map2;
if (s.useFisheye)
{
Mat newCamMat;
fisheye::estimateNewCameraMatrixForUndistortRectify(cameraMatrix, distCoeffs, imageSize,
Matx33d::eye(), newCamMat, 1);
fisheye::initUndistortRectifyMap(cameraMatrix, distCoeffs, Matx33d::eye(), newCamMat, imageSize,
CV_16SC2, map1, map2);
}
else
{
initUndistortRectifyMap(
cameraMatrix, distCoeffs, Mat(),
getOptimalNewCameraMatrix(cameraMatrix, distCoeffs, imageSize, 1, imageSize, 0), imageSize,
CV_16SC2, map1, map2);
}
for(size_t i = 0; i < s.imageList.size(); i++ )
{
view = imread(s.imageList[i], IMREAD_COLOR);
if(view.empty())
continue;
remap(view, rview, map1, map2, INTER_LINEAR);
imshow("Image View", rview);
char c = (char)waitKey();
if( c == ESC_KEY || c == 'q' || c == 'Q' )
break;
}
}
//! [show_results]
return 0;
}
//! [compute_errors]
static double computeReprojectionErrors( const vector<vector<Point3f> >& objectPoints,
const vector<vector<Point2f> >& imagePoints,
const vector<Mat>& rvecs, const vector<Mat>& tvecs,
const Mat& cameraMatrix , const Mat& distCoeffs,
vector<float>& perViewErrors, bool fisheye)
{
vector<Point2f> imagePoints2;
size_t totalPoints = 0;
double totalErr = 0, err;
perViewErrors.resize(objectPoints.size());
for(size_t i = 0; i < objectPoints.size(); ++i )
{
if (fisheye)
{
fisheye::projectPoints(objectPoints[i], imagePoints2, rvecs[i], tvecs[i], cameraMatrix,
distCoeffs);
}
else
{
projectPoints(objectPoints[i], rvecs[i], tvecs[i], cameraMatrix, distCoeffs, imagePoints2);
}
err = norm(imagePoints[i], imagePoints2, NORM_L2);
size_t n = objectPoints[i].size();
perViewErrors[i] = (float) std::sqrt(err*err/n);
totalErr += err*err;
totalPoints += n;
}
return std::sqrt(totalErr/totalPoints);
}
//! [compute_errors]
//! [board_corners]
static void calcBoardCornerPositions(Size boardSize, float squareSize, vector<Point3f>& corners,
Settings::Pattern patternType /*= Settings::CHESSBOARD*/)
{
corners.clear();
switch(patternType)
{
case Settings::CHESSBOARD:
case Settings::CIRCLES_GRID:
for (int i = 0; i < boardSize.height; ++i) {
for (int j = 0; j < boardSize.width; ++j) {
corners.push_back(Point3f(j*squareSize, i*squareSize, 0));
}
}
break;
case Settings::CHARUCOBOARD:
for (int i = 0; i < boardSize.height - 1; ++i) {
for (int j = 0; j < boardSize.width - 1; ++j) {
corners.push_back(Point3f(j*squareSize, i*squareSize, 0));
}
}
break;
case Settings::ASYMMETRIC_CIRCLES_GRID:
for (int i = 0; i < boardSize.height; i++) {
for (int j = 0; j < boardSize.width; j++) {
corners.push_back(Point3f((2 * j + i % 2)*squareSize, i*squareSize, 0));
}
}
break;
default:
break;
}
}
//! [board_corners]
static bool runCalibration( Settings& s, Size& imageSize, Mat& cameraMatrix, Mat& distCoeffs,
vector<vector<Point2f> > imagePoints, vector<Mat>& rvecs, vector<Mat>& tvecs,
vector<float>& reprojErrs, double& totalAvgErr, vector<Point3f>& newObjPoints,
float grid_width, bool release_object)
{
//! [fixed_aspect]
cameraMatrix = Mat::eye(3, 3, CV_64F);
if( !s.useFisheye && s.flag & CALIB_FIX_ASPECT_RATIO )
cameraMatrix.at<double>(0,0) = s.aspectRatio;
//! [fixed_aspect]
if (s.useFisheye) {
distCoeffs = Mat::zeros(4, 1, CV_64F);
} else {
distCoeffs = Mat::zeros(8, 1, CV_64F);
}
vector<vector<Point3f> > objectPoints(1);
calcBoardCornerPositions(s.boardSize, s.squareSize, objectPoints[0], s.calibrationPattern);
if (s.calibrationPattern == Settings::Pattern::CHARUCOBOARD) {
objectPoints[0][s.boardSize.width - 2].x = objectPoints[0][0].x + grid_width;
}
else {
objectPoints[0][s.boardSize.width - 1].x = objectPoints[0][0].x + grid_width;
}
newObjPoints = objectPoints[0];
objectPoints.resize(imagePoints.size(),objectPoints[0]);
//Find intrinsic and extrinsic camera parameters
double rms;
if (s.useFisheye) {
Mat _rvecs, _tvecs;
rms = fisheye::calibrate(objectPoints, imagePoints, imageSize, cameraMatrix, distCoeffs, _rvecs,
_tvecs, s.flag);
rvecs.reserve(_rvecs.rows);
tvecs.reserve(_tvecs.rows);
for(int i = 0; i < int(objectPoints.size()); i++){
rvecs.push_back(_rvecs.row(i));
tvecs.push_back(_tvecs.row(i));
}
} else {
int iFixedPoint = -1;
if (release_object)
iFixedPoint = s.boardSize.width - 1;
rms = calibrateCameraRO(objectPoints, imagePoints, imageSize, iFixedPoint,
cameraMatrix, distCoeffs, rvecs, tvecs, newObjPoints,
s.flag | CALIB_USE_LU);
}
if (release_object) {
cout << "New board corners: " << endl;
cout << newObjPoints[0] << endl;
cout << newObjPoints[s.boardSize.width - 1] << endl;
cout << newObjPoints[s.boardSize.width * (s.boardSize.height - 1)] << endl;
cout << newObjPoints.back() << endl;
}
cout << "Re-projection error reported by calibrateCamera: "<< rms << endl;
bool ok = checkRange(cameraMatrix) && checkRange(distCoeffs);
objectPoints.clear();
objectPoints.resize(imagePoints.size(), newObjPoints);
totalAvgErr = computeReprojectionErrors(objectPoints, imagePoints, rvecs, tvecs, cameraMatrix,
distCoeffs, reprojErrs, s.useFisheye);
return ok;
}
// Print camera parameters to the output file
static void saveCameraParams( Settings& s, Size& imageSize, Mat& cameraMatrix, Mat& distCoeffs,
const vector<Mat>& rvecs, const vector<Mat>& tvecs,
const vector<float>& reprojErrs, const vector<vector<Point2f> >& imagePoints,
double totalAvgErr, const vector<Point3f>& newObjPoints )
{
FileStorage fs( s.outputFileName, FileStorage::WRITE );
time_t tm;
time( &tm );
struct tm *t2 = localtime( &tm );
char buf[1024];
strftime( buf, sizeof(buf), "%c", t2 );
fs << "calibration_time" << buf;
if( !rvecs.empty() || !reprojErrs.empty() )
fs << "nr_of_frames" << (int)std::max(rvecs.size(), reprojErrs.size());
fs << "image_width" << imageSize.width;
fs << "image_height" << imageSize.height;
fs << "board_width" << s.boardSize.width;
fs << "board_height" << s.boardSize.height;
fs << "square_size" << s.squareSize;
fs << "marker_size" << s.markerSize;
if( !s.useFisheye && s.flag & CALIB_FIX_ASPECT_RATIO )
fs << "fix_aspect_ratio" << s.aspectRatio;
if (s.flag)
{
std::stringstream flagsStringStream;
if (s.useFisheye)
{
flagsStringStream << "flags:"
<< (s.flag & fisheye::CALIB_FIX_SKEW ? " +fix_skew" : "")
<< (s.flag & fisheye::CALIB_FIX_K1 ? " +fix_k1" : "")
<< (s.flag & fisheye::CALIB_FIX_K2 ? " +fix_k2" : "")
<< (s.flag & fisheye::CALIB_FIX_K3 ? " +fix_k3" : "")
<< (s.flag & fisheye::CALIB_FIX_K4 ? " +fix_k4" : "")
<< (s.flag & fisheye::CALIB_RECOMPUTE_EXTRINSIC ? " +recompute_extrinsic" : "");
}
else
{
flagsStringStream << "flags:"
<< (s.flag & CALIB_USE_INTRINSIC_GUESS ? " +use_intrinsic_guess" : "")
<< (s.flag & CALIB_FIX_ASPECT_RATIO ? " +fix_aspectRatio" : "")
<< (s.flag & CALIB_FIX_PRINCIPAL_POINT ? " +fix_principal_point" : "")
<< (s.flag & CALIB_ZERO_TANGENT_DIST ? " +zero_tangent_dist" : "")
<< (s.flag & CALIB_FIX_K1 ? " +fix_k1" : "")
<< (s.flag & CALIB_FIX_K2 ? " +fix_k2" : "")
<< (s.flag & CALIB_FIX_K3 ? " +fix_k3" : "")
<< (s.flag & CALIB_FIX_K4 ? " +fix_k4" : "")
<< (s.flag & CALIB_FIX_K5 ? " +fix_k5" : "");
}
fs.writeComment(flagsStringStream.str());
}
fs << "flags" << s.flag;
fs << "fisheye_model" << s.useFisheye;
fs << "camera_matrix" << cameraMatrix;
fs << "distortion_coefficients" << distCoeffs;
fs << "avg_reprojection_error" << totalAvgErr;
if (s.writeExtrinsics && !reprojErrs.empty())
fs << "per_view_reprojection_errors" << Mat(reprojErrs);
if(s.writeExtrinsics && !rvecs.empty() && !tvecs.empty() )
{
CV_Assert(rvecs[0].type() == tvecs[0].type());
Mat bigmat((int)rvecs.size(), 6, CV_MAKETYPE(rvecs[0].type(), 1));
bool needReshapeR = rvecs[0].depth() != 1 ? true : false;
bool needReshapeT = tvecs[0].depth() != 1 ? true : false;
for( size_t i = 0; i < rvecs.size(); i++ )
{
Mat r = bigmat(Range(int(i), int(i+1)), Range(0,3));
Mat t = bigmat(Range(int(i), int(i+1)), Range(3,6));
if(needReshapeR)
rvecs[i].reshape(1, 1).copyTo(r);
else
{
//*.t() is MatExpr (not Mat) so we can use assignment operator
CV_Assert(rvecs[i].rows == 3 && rvecs[i].cols == 1);
r = rvecs[i].t();
}
if(needReshapeT)
tvecs[i].reshape(1, 1).copyTo(t);
else
{
CV_Assert(tvecs[i].rows == 3 && tvecs[i].cols == 1);
t = tvecs[i].t();
}
}
fs.writeComment("a set of 6-tuples (rotation vector + translation vector) for each view");
fs << "extrinsic_parameters" << bigmat;
}
if(s.writePoints && !imagePoints.empty() )
{
Mat imagePtMat((int)imagePoints.size(), (int)imagePoints[0].size(), CV_32FC2);
for( size_t i = 0; i < imagePoints.size(); i++ )
{
Mat r = imagePtMat.row(int(i)).reshape(2, imagePtMat.cols);
Mat imgpti(imagePoints[i]);
imgpti.copyTo(r);
}
fs << "image_points" << imagePtMat;
}
if( s.writeGrid && !newObjPoints.empty() )
{
fs << "grid_points" << newObjPoints;
}
}
//! [run_and_save]
bool runCalibrationAndSave(Settings& s, Size imageSize, Mat& cameraMatrix, Mat& distCoeffs,
vector<vector<Point2f> > imagePoints, float grid_width, bool release_object)
{
vector<Mat> rvecs, tvecs;
vector<float> reprojErrs;
double totalAvgErr = 0;
vector<Point3f> newObjPoints;
bool ok = runCalibration(s, imageSize, cameraMatrix, distCoeffs, imagePoints, rvecs, tvecs, reprojErrs,
totalAvgErr, newObjPoints, grid_width, release_object);
cout << (ok ? "Calibration succeeded" : "Calibration failed")
<< ". avg re projection error = " << totalAvgErr << endl;
if (ok)
saveCameraParams(s, imageSize, cameraMatrix, distCoeffs, rvecs, tvecs, reprojErrs, imagePoints,
totalAvgErr, newObjPoints);
return ok;
}
//! [run_and_save]
|