1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905
|
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level
// directory of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2018-2019 Intel Corporation
#include "opencv2/opencv_modules.hpp"
#if defined(HAVE_OPENCV_GAPI)
#include <opencv2/gapi.hpp>
#include <opencv2/gapi/core.hpp>
#include <opencv2/gapi/imgproc.hpp>
#include <opencv2/gapi/fluid/core.hpp>
#include <opencv2/gapi/infer.hpp>
#include <opencv2/gapi/infer/ie.hpp>
#include <opencv2/gapi/cpu/gcpukernel.hpp>
#include <opencv2/gapi/streaming/cap.hpp>
#include <opencv2/highgui.hpp> // windows
namespace config
{
constexpr char kWinFaceBeautification[] = "FaceBeautificator";
constexpr char kWinInput[] = "Input";
constexpr char kParserAbout[] =
"Use this script to run the face beautification algorithm with G-API.";
constexpr char kParserOptions[] =
"{ help h || print the help message. }"
"{ facepath f || a path to a Face detection model file (.xml).}"
"{ facedevice |GPU| the face detection computation device.}"
"{ landmpath l || a path to a Landmarks detection model file (.xml).}"
"{ landmdevice |CPU| the landmarks detection computation device.}"
"{ input i || a path to an input. Skip to capture from a camera.}"
"{ boxes b |false| set true to draw face Boxes in the \"Input\" window.}"
"{ landmarks m |false| set true to draw landMarks in the \"Input\" window.}"
"{ streaming s |true| set false to disable stream pipelining.}"
"{ performance p |false| set true to disable output displaying.}";
const cv::Scalar kClrWhite (255, 255, 255);
const cv::Scalar kClrGreen ( 0, 255, 0);
const cv::Scalar kClrYellow( 0, 255, 255);
constexpr float kConfThresh = 0.7f;
const cv::Size kGKernelSize(5, 5);
constexpr double kGSigma = 0.0;
constexpr int kBSize = 9;
constexpr double kBSigmaCol = 30.0;
constexpr double kBSigmaSp = 30.0;
constexpr int kUnshSigma = 3;
constexpr float kUnshStrength = 0.7f;
constexpr int kAngDelta = 1;
constexpr bool kClosedLine = true;
} // namespace config
namespace
{
//! [vec_ROI]
using VectorROI = std::vector<cv::Rect>;
//! [vec_ROI]
using GArrayROI = cv::GArray<cv::Rect>;
using Contour = std::vector<cv::Point>;
using Landmarks = std::vector<cv::Point>;
// Wrapper function
template<typename Tp> inline int toIntRounded(const Tp x)
{
return static_cast<int>(std::lround(x));
}
//! [toDbl]
template<typename Tp> inline double toDouble(const Tp x)
{
return static_cast<double>(x);
}
//! [toDbl]
struct Avg {
struct Elapsed {
explicit Elapsed(double ms) : ss(ms / 1000.),
mm(toIntRounded(ss / 60)) {}
const double ss;
const int mm;
};
using MS = std::chrono::duration<double, std::ratio<1, 1000>>;
using TS = std::chrono::time_point<std::chrono::high_resolution_clock>;
TS started;
void start() { started = now(); }
TS now() const { return std::chrono::high_resolution_clock::now(); }
double tick() const { return std::chrono::duration_cast<MS>(now() - started).count(); }
Elapsed elapsed() const { return Elapsed{tick()}; }
double fps(std::size_t n) const { return static_cast<double>(n) / (tick() / 1000.); }
};
std::ostream& operator<<(std::ostream &os, const Avg::Elapsed &e) {
os << e.mm << ':' << (e.ss - 60*e.mm);
return os;
}
std::string getWeightsPath(const std::string &mdlXMLPath) // mdlXMLPath =
// "The/Full/Path.xml"
{
size_t size = mdlXMLPath.size();
CV_Assert(mdlXMLPath.substr(size - 4, size) // The last 4 symbols
== ".xml"); // must be ".xml"
std::string mdlBinPath(mdlXMLPath);
return mdlBinPath.replace(size - 3, 3, "bin"); // return
// "The/Full/Path.bin"
}
} // anonymous namespace
namespace custom
{
using TplPtsFaceElements_Jaw = std::tuple<cv::GArray<Landmarks>,
cv::GArray<Contour>>;
// Wrapper-functions
inline int getLineInclinationAngleDegrees(const cv::Point &ptLeft,
const cv::Point &ptRight);
inline Contour getForeheadEllipse(const cv::Point &ptJawLeft,
const cv::Point &ptJawRight,
const cv::Point &ptJawMiddle);
inline Contour getEyeEllipse(const cv::Point &ptLeft,
const cv::Point &ptRight);
inline Contour getPatchedEllipse(const cv::Point &ptLeft,
const cv::Point &ptRight,
const cv::Point &ptUp,
const cv::Point &ptDown);
// Networks
//! [net_decl]
G_API_NET(FaceDetector, <cv::GMat(cv::GMat)>, "face_detector");
G_API_NET(LandmDetector, <cv::GMat(cv::GMat)>, "landm_detector");
//! [net_decl]
// Function kernels
G_TYPED_KERNEL(GBilatFilter, <cv::GMat(cv::GMat,int,double,double)>,
"custom.faceb12n.bilateralFilter")
{
static cv::GMatDesc outMeta(cv::GMatDesc in, int,double,double)
{
return in;
}
};
G_TYPED_KERNEL(GLaplacian, <cv::GMat(cv::GMat,int)>,
"custom.faceb12n.Laplacian")
{
static cv::GMatDesc outMeta(cv::GMatDesc in, int)
{
return in;
}
};
G_TYPED_KERNEL(GFillPolyGContours, <cv::GMat(cv::GMat,cv::GArray<Contour>)>,
"custom.faceb12n.fillPolyGContours")
{
static cv::GMatDesc outMeta(cv::GMatDesc in, cv::GArrayDesc)
{
return in.withType(CV_8U, 1);
}
};
G_TYPED_KERNEL(GPolyLines, <cv::GMat(cv::GMat,cv::GArray<Contour>,bool,
cv::Scalar)>,
"custom.faceb12n.polyLines")
{
static cv::GMatDesc outMeta(cv::GMatDesc in, cv::GArrayDesc,bool,cv::Scalar)
{
return in;
}
};
G_TYPED_KERNEL(GRectangle, <cv::GMat(cv::GMat,GArrayROI,cv::Scalar)>,
"custom.faceb12n.rectangle")
{
static cv::GMatDesc outMeta(cv::GMatDesc in, cv::GArrayDesc,cv::Scalar)
{
return in;
}
};
G_TYPED_KERNEL(GFacePostProc, <GArrayROI(cv::GMat,cv::GMat,float)>,
"custom.faceb12n.faceDetectPostProc")
{
static cv::GArrayDesc outMeta(const cv::GMatDesc&,const cv::GMatDesc&,float)
{
return cv::empty_array_desc();
}
};
G_TYPED_KERNEL_M(GLandmPostProc, <TplPtsFaceElements_Jaw(cv::GArray<cv::GMat>,
GArrayROI)>,
"custom.faceb12n.landmDetectPostProc")
{
static std::tuple<cv::GArrayDesc,cv::GArrayDesc> outMeta(
const cv::GArrayDesc&,const cv::GArrayDesc&)
{
return std::make_tuple(cv::empty_array_desc(), cv::empty_array_desc());
}
};
//! [kern_m_decl]
using TplFaces_FaceElements = std::tuple<cv::GArray<Contour>, cv::GArray<Contour>>;
G_TYPED_KERNEL_M(GGetContours, <TplFaces_FaceElements (cv::GArray<Landmarks>, cv::GArray<Contour>)>,
"custom.faceb12n.getContours")
{
static std::tuple<cv::GArrayDesc,cv::GArrayDesc> outMeta(const cv::GArrayDesc&,const cv::GArrayDesc&)
{
return std::make_tuple(cv::empty_array_desc(), cv::empty_array_desc());
}
};
//! [kern_m_decl]
// OCV_Kernels
// This kernel applies Bilateral filter to an input src with default
// "cv::bilateralFilter" border argument
GAPI_OCV_KERNEL(GCPUBilateralFilter, custom::GBilatFilter)
{
static void run(const cv::Mat &src,
const int diameter,
const double sigmaColor,
const double sigmaSpace,
cv::Mat &out)
{
cv::bilateralFilter(src, out, diameter, sigmaColor, sigmaSpace);
}
};
// This kernel applies Laplace operator to an input src with default
// "cv::Laplacian" arguments
GAPI_OCV_KERNEL(GCPULaplacian, custom::GLaplacian)
{
static void run(const cv::Mat &src,
const int ddepth,
cv::Mat &out)
{
cv::Laplacian(src, out, ddepth);
}
};
// This kernel draws given white filled contours "cnts" on a clear Mat "out"
// (defined by a Scalar(0)) with standard "cv::fillPoly" arguments.
// It should be used to create a mask.
// The input Mat seems unused inside the function "run", but it is used deeper
// in the kernel to define an output size.
GAPI_OCV_KERNEL(GCPUFillPolyGContours, custom::GFillPolyGContours)
{
static void run(const cv::Mat &,
const std::vector<Contour> &cnts,
cv::Mat &out)
{
out = cv::Scalar(0);
cv::fillPoly(out, cnts, config::kClrWhite);
}
};
// This kernel draws given contours on an input src with default "cv::polylines"
// arguments
GAPI_OCV_KERNEL(GCPUPolyLines, custom::GPolyLines)
{
static void run(const cv::Mat &src,
const std::vector<Contour> &cnts,
const bool isClosed,
const cv::Scalar &color,
cv::Mat &out)
{
src.copyTo(out);
cv::polylines(out, cnts, isClosed, color);
}
};
// This kernel draws given rectangles on an input src with default
// "cv::rectangle" arguments
GAPI_OCV_KERNEL(GCPURectangle, custom::GRectangle)
{
static void run(const cv::Mat &src,
const VectorROI &vctFaceBoxes,
const cv::Scalar &color,
cv::Mat &out)
{
src.copyTo(out);
for (const cv::Rect &box : vctFaceBoxes)
{
cv::rectangle(out, box, color);
}
}
};
// A face detector outputs a blob with the shape: [1, 1, N, 7], where N is
// the number of detected bounding boxes. Structure of an output for every
// detected face is the following:
// [image_id, label, conf, x_min, y_min, x_max, y_max], all the seven elements
// are floating point. For more details please visit:
// https://github.com/opencv/open_model_zoo/blob/master/intel_models/face-detection-adas-0001
// This kernel is the face detection output blob parsing that returns a vector
// of detected faces' rects:
//! [fd_pp]
GAPI_OCV_KERNEL(GCPUFacePostProc, GFacePostProc)
{
static void run(const cv::Mat &inDetectResult,
const cv::Mat &inFrame,
const float faceConfThreshold,
VectorROI &outFaces)
{
const int kObjectSize = 7;
const int imgCols = inFrame.size().width;
const int imgRows = inFrame.size().height;
const cv::Rect borders({0, 0}, inFrame.size());
outFaces.clear();
const int numOfDetections = inDetectResult.size[2];
const float *data = inDetectResult.ptr<float>();
for (int i = 0; i < numOfDetections; i++)
{
const float faceId = data[i * kObjectSize + 0];
if (faceId < 0.f) // indicates the end of detections
{
break;
}
const float faceConfidence = data[i * kObjectSize + 2];
// We can cut detections by the `conf` field
// to avoid mistakes of the detector.
if (faceConfidence > faceConfThreshold)
{
const float left = data[i * kObjectSize + 3];
const float top = data[i * kObjectSize + 4];
const float right = data[i * kObjectSize + 5];
const float bottom = data[i * kObjectSize + 6];
// These are normalized coordinates and are between 0 and 1;
// to get the real pixel coordinates we should multiply it by
// the image sizes respectively to the directions:
cv::Point tl(toIntRounded(left * imgCols),
toIntRounded(top * imgRows));
cv::Point br(toIntRounded(right * imgCols),
toIntRounded(bottom * imgRows));
outFaces.push_back(cv::Rect(tl, br) & borders);
}
}
}
};
//! [fd_pp]
// This kernel is the facial landmarks detection output Mat parsing for every
// detected face; returns a tuple containing a vector of vectors of
// face elements' Points and a vector of vectors of jaw's Points:
// There are 35 landmarks given by the default detector for each face
// in a frame; the first 18 of them are face elements (eyes, eyebrows,
// a nose, a mouth) and the last 17 - a jaw contour. The detector gives
// floating point values for landmarks' normed coordinates relatively
// to an input ROI (not the original frame).
// For more details please visit:
// https://github.com/opencv/open_model_zoo/blob/master/intel_models/facial-landmarks-35-adas-0002
GAPI_OCV_KERNEL(GCPULandmPostProc, GLandmPostProc)
{
static void run(const std::vector<cv::Mat> &vctDetectResults,
const VectorROI &vctRects,
std::vector<Landmarks> &vctPtsFaceElems,
std::vector<Contour> &vctCntJaw)
{
static constexpr int kNumFaceElems = 18;
static constexpr int kNumTotal = 35;
const size_t numFaces = vctRects.size();
CV_Assert(vctPtsFaceElems.size() == 0ul);
CV_Assert(vctCntJaw.size() == 0ul);
vctPtsFaceElems.reserve(numFaces);
vctCntJaw.reserve(numFaces);
Landmarks ptsFaceElems;
Contour cntJaw;
ptsFaceElems.reserve(kNumFaceElems);
cntJaw.reserve(kNumTotal - kNumFaceElems);
for (size_t i = 0; i < numFaces; i++)
{
const float *data = vctDetectResults[i].ptr<float>();
// The face elements points:
ptsFaceElems.clear();
for (int j = 0; j < kNumFaceElems * 2; j += 2)
{
cv::Point pt = cv::Point(toIntRounded(data[j] * vctRects[i].width),
toIntRounded(data[j+1] * vctRects[i].height)) + vctRects[i].tl();
ptsFaceElems.push_back(pt);
}
vctPtsFaceElems.push_back(ptsFaceElems);
// The jaw contour points:
cntJaw.clear();
for(int j = kNumFaceElems * 2; j < kNumTotal * 2; j += 2)
{
cv::Point pt = cv::Point(toIntRounded(data[j] * vctRects[i].width),
toIntRounded(data[j+1] * vctRects[i].height)) + vctRects[i].tl();
cntJaw.push_back(pt);
}
vctCntJaw.push_back(cntJaw);
}
}
};
// This kernel is the facial landmarks detection post-processing for every face
// detected before; output is a tuple of vectors of detected face contours and
// facial elements contours:
//! [ld_pp_cnts]
//! [kern_m_impl]
GAPI_OCV_KERNEL(GCPUGetContours, GGetContours)
{
static void run(const std::vector<Landmarks> &vctPtsFaceElems, // 18 landmarks of the facial elements
const std::vector<Contour> &vctCntJaw, // 17 landmarks of a jaw
std::vector<Contour> &vctElemsContours,
std::vector<Contour> &vctFaceContours)
{
//! [kern_m_impl]
size_t numFaces = vctCntJaw.size();
CV_Assert(numFaces == vctPtsFaceElems.size());
CV_Assert(vctElemsContours.size() == 0ul);
CV_Assert(vctFaceContours.size() == 0ul);
// vctFaceElemsContours will store all the face elements' contours found
// in an input image, namely 4 elements (two eyes, nose, mouth) for every detected face:
vctElemsContours.reserve(numFaces * 4);
// vctFaceElemsContours will store all the faces' contours found in an input image:
vctFaceContours.reserve(numFaces);
Contour cntFace, cntLeftEye, cntRightEye, cntNose, cntMouth;
cntNose.reserve(4);
for (size_t i = 0ul; i < numFaces; i++)
{
// The face elements contours
// A left eye:
// Approximating the lower eye contour by half-ellipse (using eye points) and storing in cntLeftEye:
cntLeftEye = getEyeEllipse(vctPtsFaceElems[i][1], vctPtsFaceElems[i][0]);
// Pushing the left eyebrow clock-wise:
cntLeftEye.insert(cntLeftEye.end(), {vctPtsFaceElems[i][12], vctPtsFaceElems[i][13],
vctPtsFaceElems[i][14]});
// A right eye:
// Approximating the lower eye contour by half-ellipse (using eye points) and storing in vctRightEye:
cntRightEye = getEyeEllipse(vctPtsFaceElems[i][2], vctPtsFaceElems[i][3]);
// Pushing the right eyebrow clock-wise:
cntRightEye.insert(cntRightEye.end(), {vctPtsFaceElems[i][15], vctPtsFaceElems[i][16],
vctPtsFaceElems[i][17]});
// A nose:
// Storing the nose points clock-wise
cntNose.clear();
cntNose.insert(cntNose.end(), {vctPtsFaceElems[i][4], vctPtsFaceElems[i][7],
vctPtsFaceElems[i][5], vctPtsFaceElems[i][6]});
// A mouth:
// Approximating the mouth contour by two half-ellipses (using mouth points) and storing in vctMouth:
cntMouth = getPatchedEllipse(vctPtsFaceElems[i][8], vctPtsFaceElems[i][9],
vctPtsFaceElems[i][10], vctPtsFaceElems[i][11]);
// Storing all the elements in a vector:
vctElemsContours.insert(vctElemsContours.end(), {cntLeftEye, cntRightEye, cntNose, cntMouth});
// The face contour:
// Approximating the forehead contour by half-ellipse (using jaw points) and storing in vctFace:
cntFace = getForeheadEllipse(vctCntJaw[i][0], vctCntJaw[i][16], vctCntJaw[i][8]);
// The ellipse is drawn clock-wise, but jaw contour points goes vice versa, so it's necessary to push
// cntJaw from the end to the begin using a reverse iterator:
std::copy(vctCntJaw[i].crbegin(), vctCntJaw[i].crend(), std::back_inserter(cntFace));
// Storing the face contour in another vector:
vctFaceContours.push_back(cntFace);
}
}
};
//! [ld_pp_cnts]
// GAPI subgraph functions
inline cv::GMat unsharpMask(const cv::GMat &src,
const int sigma,
const float strength);
inline cv::GMat mask3C(const cv::GMat &src,
const cv::GMat &mask);
} // namespace custom
// Functions implementation:
// Returns an angle (in degrees) between a line given by two Points and
// the horison. Note that the result depends on the arguments order:
//! [ld_pp_incl]
inline int custom::getLineInclinationAngleDegrees(const cv::Point &ptLeft, const cv::Point &ptRight)
{
const cv::Point residual = ptRight - ptLeft;
if (residual.y == 0 && residual.x == 0)
return 0;
else
return toIntRounded(atan2(toDouble(residual.y), toDouble(residual.x)) * 180.0 / CV_PI);
}
//! [ld_pp_incl]
// Approximates a forehead by half-ellipse using jaw points and some geometry
// and then returns points of the contour; "capacity" is used to reserve enough
// memory as there will be other points inserted.
//! [ld_pp_fhd]
inline Contour custom::getForeheadEllipse(const cv::Point &ptJawLeft,
const cv::Point &ptJawRight,
const cv::Point &ptJawLower)
{
Contour cntForehead;
// The point amid the top two points of a jaw:
const cv::Point ptFaceCenter((ptJawLeft + ptJawRight) / 2);
// This will be the center of the ellipse.
// The angle between the jaw and the vertical:
const int angFace = getLineInclinationAngleDegrees(ptJawLeft, ptJawRight);
// This will be the inclination of the ellipse
// Counting the half-axis of the ellipse:
const double jawWidth = cv::norm(ptJawLeft - ptJawRight);
// A forehead width equals the jaw width, and we need a half-axis:
const int axisX = toIntRounded(jawWidth / 2.0);
const double jawHeight = cv::norm(ptFaceCenter - ptJawLower);
// According to research, in average a forehead is approximately 2/3 of
// a jaw:
const int axisY = toIntRounded(jawHeight * 2 / 3.0);
// We need the upper part of an ellipse:
static constexpr int kAngForeheadStart = 180;
static constexpr int kAngForeheadEnd = 360;
cv::ellipse2Poly(ptFaceCenter, cv::Size(axisX, axisY), angFace, kAngForeheadStart, kAngForeheadEnd,
config::kAngDelta, cntForehead);
return cntForehead;
}
//! [ld_pp_fhd]
// Approximates the lower eye contour by half-ellipse using eye points and some
// geometry and then returns points of the contour.
//! [ld_pp_eye]
inline Contour custom::getEyeEllipse(const cv::Point &ptLeft, const cv::Point &ptRight)
{
Contour cntEyeBottom;
const cv::Point ptEyeCenter((ptRight + ptLeft) / 2);
const int angle = getLineInclinationAngleDegrees(ptLeft, ptRight);
const int axisX = toIntRounded(cv::norm(ptRight - ptLeft) / 2.0);
// According to research, in average a Y axis of an eye is approximately
// 1/3 of an X one.
const int axisY = axisX / 3;
// We need the lower part of an ellipse:
static constexpr int kAngEyeStart = 0;
static constexpr int kAngEyeEnd = 180;
cv::ellipse2Poly(ptEyeCenter, cv::Size(axisX, axisY), angle, kAngEyeStart, kAngEyeEnd, config::kAngDelta,
cntEyeBottom);
return cntEyeBottom;
}
//! [ld_pp_eye]
//This function approximates an object (a mouth) by two half-ellipses using
// 4 points of the axes' ends and then returns points of the contour:
inline Contour custom::getPatchedEllipse(const cv::Point &ptLeft,
const cv::Point &ptRight,
const cv::Point &ptUp,
const cv::Point &ptDown)
{
// Shared characteristics for both half-ellipses:
const cv::Point ptMouthCenter((ptLeft + ptRight) / 2);
const int angMouth = getLineInclinationAngleDegrees(ptLeft, ptRight);
const int axisX = toIntRounded(cv::norm(ptRight - ptLeft) / 2.0);
// The top half-ellipse:
Contour cntMouthTop;
const int axisYTop = toIntRounded(cv::norm(ptMouthCenter - ptUp));
// We need the upper part of an ellipse:
static constexpr int angTopStart = 180;
static constexpr int angTopEnd = 360;
cv::ellipse2Poly(ptMouthCenter, cv::Size(axisX, axisYTop), angMouth, angTopStart, angTopEnd, config::kAngDelta, cntMouthTop);
// The bottom half-ellipse:
Contour cntMouth;
const int axisYBot = toIntRounded(cv::norm(ptMouthCenter - ptDown));
// We need the lower part of an ellipse:
static constexpr int angBotStart = 0;
static constexpr int angBotEnd = 180;
cv::ellipse2Poly(ptMouthCenter, cv::Size(axisX, axisYBot), angMouth, angBotStart, angBotEnd, config::kAngDelta, cntMouth);
// Pushing the upper part to vctOut
std::copy(cntMouthTop.cbegin(), cntMouthTop.cend(), std::back_inserter(cntMouth));
return cntMouth;
}
//! [unsh]
inline cv::GMat custom::unsharpMask(const cv::GMat &src,
const int sigma,
const float strength)
{
cv::GMat blurred = cv::gapi::medianBlur(src, sigma);
cv::GMat laplacian = custom::GLaplacian::on(blurred, CV_8U);
return (src - (laplacian * strength));
}
//! [unsh]
inline cv::GMat custom::mask3C(const cv::GMat &src,
const cv::GMat &mask)
{
std::tuple<cv::GMat,cv::GMat,cv::GMat> tplIn = cv::gapi::split3(src);
cv::GMat masked0 = cv::gapi::mask(std::get<0>(tplIn), mask);
cv::GMat masked1 = cv::gapi::mask(std::get<1>(tplIn), mask);
cv::GMat masked2 = cv::gapi::mask(std::get<2>(tplIn), mask);
return cv::gapi::merge3(masked0, masked1, masked2);
}
int main(int argc, char** argv)
{
cv::namedWindow(config::kWinFaceBeautification, cv::WINDOW_NORMAL);
cv::namedWindow(config::kWinInput, cv::WINDOW_NORMAL);
cv::CommandLineParser parser(argc, argv, config::kParserOptions);
parser.about(config::kParserAbout);
if (argc == 1 || parser.has("help"))
{
parser.printMessage();
return 0;
}
// Parsing input arguments
const std::string faceXmlPath = parser.get<std::string>("facepath");
const std::string faceBinPath = getWeightsPath(faceXmlPath);
const std::string faceDevice = parser.get<std::string>("facedevice");
const std::string landmXmlPath = parser.get<std::string>("landmpath");
const std::string landmBinPath = getWeightsPath(landmXmlPath);
const std::string landmDevice = parser.get<std::string>("landmdevice");
// Declaring a graph
// The version of a pipeline expression with a lambda-based
// constructor is used to keep all temporary objects in a dedicated scope.
//! [ppl]
cv::GComputation pipeline([=]()
{
//! [net_usg_fd]
cv::GMat gimgIn; // input
cv::GMat faceOut = cv::gapi::infer<custom::FaceDetector>(gimgIn);
//! [net_usg_fd]
GArrayROI garRects = custom::GFacePostProc::on(faceOut, gimgIn, config::kConfThresh); // post-proc
//! [net_usg_ld]
cv::GArray<cv::GMat> landmOut = cv::gapi::infer<custom::LandmDetector>(garRects, gimgIn);
//! [net_usg_ld]
cv::GArray<Landmarks> garElems; // |
cv::GArray<Contour> garJaws; // |output arrays
std::tie(garElems, garJaws) = custom::GLandmPostProc::on(landmOut, garRects); // post-proc
cv::GArray<Contour> garElsConts; // face elements
cv::GArray<Contour> garFaceConts; // whole faces
std::tie(garElsConts, garFaceConts) = custom::GGetContours::on(garElems, garJaws); // interpolation
//! [msk_ppline]
cv::GMat mskSharp = custom::GFillPolyGContours::on(gimgIn, garElsConts); // |
cv::GMat mskSharpG = cv::gapi::gaussianBlur(mskSharp, config::kGKernelSize, // |
config::kGSigma); // |
cv::GMat mskBlur = custom::GFillPolyGContours::on(gimgIn, garFaceConts); // |
cv::GMat mskBlurG = cv::gapi::gaussianBlur(mskBlur, config::kGKernelSize, // |
config::kGSigma); // |draw masks
// The first argument in mask() is Blur as we want to subtract from // |
// BlurG the next step: // |
cv::GMat mskBlurFinal = mskBlurG - cv::gapi::mask(mskBlurG, mskSharpG); // |
cv::GMat mskFacesGaussed = mskBlurFinal + mskSharpG; // |
cv::GMat mskFacesWhite = cv::gapi::threshold(mskFacesGaussed, 0, 255, cv::THRESH_BINARY); // |
cv::GMat mskNoFaces = cv::gapi::bitwise_not(mskFacesWhite); // |
//! [msk_ppline]
cv::GMat gimgBilat = custom::GBilatFilter::on(gimgIn, config::kBSize,
config::kBSigmaCol, config::kBSigmaSp);
cv::GMat gimgSharp = custom::unsharpMask(gimgIn, config::kUnshSigma,
config::kUnshStrength);
// Applying the masks
// Custom function mask3C() should be used instead of just gapi::mask()
// as mask() provides CV_8UC1 source only (and we have CV_8U3C)
cv::GMat gimgBilatMasked = custom::mask3C(gimgBilat, mskBlurFinal);
cv::GMat gimgSharpMasked = custom::mask3C(gimgSharp, mskSharpG);
cv::GMat gimgInMasked = custom::mask3C(gimgIn, mskNoFaces);
cv::GMat gimgBeautif = gimgBilatMasked + gimgSharpMasked + gimgInMasked;
return cv::GComputation(cv::GIn(gimgIn), cv::GOut(gimgBeautif,
cv::gapi::copy(gimgIn),
garFaceConts,
garElsConts,
garRects));
});
//! [ppl]
// Declaring IE params for networks
//! [net_param]
auto faceParams = cv::gapi::ie::Params<custom::FaceDetector>
{
/*std::string*/ faceXmlPath,
/*std::string*/ faceBinPath,
/*std::string*/ faceDevice
};
auto landmParams = cv::gapi::ie::Params<custom::LandmDetector>
{
/*std::string*/ landmXmlPath,
/*std::string*/ landmBinPath,
/*std::string*/ landmDevice
};
//! [net_param]
//! [netw]
auto networks = cv::gapi::networks(faceParams, landmParams);
//! [netw]
// Declaring custom and fluid kernels have been used:
//! [kern_pass_1]
auto customKernels = cv::gapi::kernels<custom::GCPUBilateralFilter,
custom::GCPULaplacian,
custom::GCPUFillPolyGContours,
custom::GCPUPolyLines,
custom::GCPURectangle,
custom::GCPUFacePostProc,
custom::GCPULandmPostProc,
custom::GCPUGetContours>();
auto kernels = cv::gapi::combine(cv::gapi::core::fluid::kernels(),
customKernels);
//! [kern_pass_1]
Avg avg;
size_t frames = 0;
// The flags for drawing/not drawing face boxes or/and landmarks in the
// \"Input\" window:
const bool flgBoxes = parser.get<bool>("boxes");
const bool flgLandmarks = parser.get<bool>("landmarks");
// The flag to involve stream pipelining:
const bool flgStreaming = parser.get<bool>("streaming");
// The flag to display the output images or not:
const bool flgPerformance = parser.get<bool>("performance");
// Now we are ready to compile the pipeline to a stream with specified
// kernels, networks and image format expected to process
if (flgStreaming == true)
{
//! [str_comp]
cv::GStreamingCompiled stream = pipeline.compileStreaming(cv::compile_args(kernels, networks));
//! [str_comp]
// Setting the source for the stream:
//! [str_src]
if (parser.has("input"))
{
stream.setSource(cv::gapi::wip::make_src<cv::gapi::wip::GCaptureSource>(parser.get<cv::String>("input")));
}
//! [str_src]
else
{
stream.setSource(cv::gapi::wip::make_src<cv::gapi::wip::GCaptureSource>(0));
}
// Declaring output variables
// Streaming:
cv::Mat imgShow;
cv::Mat imgBeautif;
std::vector<Contour> vctFaceConts, vctElsConts;
VectorROI vctRects;
if (flgPerformance == true)
{
auto out_vector = cv::gout(imgBeautif, imgShow, vctFaceConts,
vctElsConts, vctRects);
stream.start();
avg.start();
while (stream.running())
{
stream.pull(std::move(out_vector));
frames++;
}
}
else // flgPerformance == false
{
//! [str_loop]
auto out_vector = cv::gout(imgBeautif, imgShow, vctFaceConts,
vctElsConts, vctRects);
stream.start();
avg.start();
while (stream.running())
{
if (!stream.try_pull(std::move(out_vector)))
{
// Use a try_pull() to obtain data.
// If there's no data, let UI refresh (and handle keypress)
if (cv::waitKey(1) >= 0) break;
else continue;
}
frames++;
// Drawing face boxes and landmarks if necessary:
if (flgLandmarks == true)
{
cv::polylines(imgShow, vctFaceConts, config::kClosedLine,
config::kClrYellow);
cv::polylines(imgShow, vctElsConts, config::kClosedLine,
config::kClrYellow);
}
if (flgBoxes == true)
for (auto rect : vctRects)
cv::rectangle(imgShow, rect, config::kClrGreen);
cv::imshow(config::kWinInput, imgShow);
cv::imshow(config::kWinFaceBeautification, imgBeautif);
}
//! [str_loop]
}
std::cout << "Processed " << frames << " frames in " << avg.elapsed()
<< " (" << avg.fps(frames) << " FPS)" << std::endl;
}
else // serial mode:
{
//! [bef_cap]
#include <opencv2/videoio.hpp>
cv::GCompiled cc;
cv::VideoCapture cap;
if (parser.has("input"))
{
cap.open(parser.get<cv::String>("input"));
}
//! [bef_cap]
else if (!cap.open(0))
{
std::cout << "No input available" << std::endl;
return 1;
}
if (flgPerformance == true)
{
while (true)
{
cv::Mat img;
cv::Mat imgShow;
cv::Mat imgBeautif;
std::vector<Contour> vctFaceConts, vctElsConts;
VectorROI vctRects;
cap >> img;
if (img.empty())
{
break;
}
frames++;
if (!cc)
{
cc = pipeline.compile(cv::descr_of(img), cv::compile_args(kernels, networks));
avg.start();
}
cc(cv::gin(img), cv::gout(imgBeautif, imgShow, vctFaceConts,
vctElsConts, vctRects));
}
}
else // flgPerformance == false
{
//! [bef_loop]
while (cv::waitKey(1) < 0)
{
cv::Mat img;
cv::Mat imgShow;
cv::Mat imgBeautif;
std::vector<Contour> vctFaceConts, vctElsConts;
VectorROI vctRects;
cap >> img;
if (img.empty())
{
cv::waitKey();
break;
}
frames++;
//! [apply]
pipeline.apply(cv::gin(img), cv::gout(imgBeautif, imgShow,
vctFaceConts,
vctElsConts, vctRects),
cv::compile_args(kernels, networks));
//! [apply]
if (frames == 1)
{
// Start timer only after 1st frame processed -- compilation
// happens on-the-fly here
avg.start();
}
// Drawing face boxes and landmarks if necessary:
if (flgLandmarks == true)
{
cv::polylines(imgShow, vctFaceConts, config::kClosedLine,
config::kClrYellow);
cv::polylines(imgShow, vctElsConts, config::kClosedLine,
config::kClrYellow);
}
if (flgBoxes == true)
for (auto rect : vctRects)
cv::rectangle(imgShow, rect, config::kClrGreen);
cv::imshow(config::kWinInput, imgShow);
cv::imshow(config::kWinFaceBeautification, imgBeautif);
}
}
//! [bef_loop]
std::cout << "Processed " << frames << " frames in " << avg.elapsed()
<< " (" << avg.fps(frames) << " FPS)" << std::endl;
}
return 0;
}
#else
#include <iostream>
int main()
{
std::cerr << "This tutorial code requires G-API module "
"with Inference Engine backend to run"
<< std::endl;
return 1;
}
#endif // HAVE_OPECV_GAPI
|