1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
|
/**
* @file core_reduce.cpp
* @brief It demonstrates the usage of cv::reduce .
*
* It shows how to compute the row sum, column sum, row average,
* column average, row minimum, column minimum, row maximum
* and column maximum of a cv::Mat.
*
* @author KUANG Fangjun
* @date August 2017
*/
#include <iostream>
#include <opencv2/core.hpp>
using namespace std;
using namespace cv;
int main()
{
{
//! [example]
Mat m = (Mat_<uchar>(3,2) << 1,2,3,4,5,6);
Mat col_sum, row_sum;
reduce(m, col_sum, 0, REDUCE_SUM, CV_32F);
reduce(m, row_sum, 1, REDUCE_SUM, CV_32F);
/*
m =
[ 1, 2;
3, 4;
5, 6]
col_sum =
[9, 12]
row_sum =
[3;
7;
11]
*/
//! [example]
Mat col_average, row_average, col_min, col_max, row_min, row_max;
reduce(m, col_average, 0, REDUCE_AVG, CV_32F);
cout << "col_average =\n" << col_average << endl;
reduce(m, row_average, 1, REDUCE_AVG, CV_32F);
cout << "row_average =\n" << row_average << endl;
reduce(m, col_min, 0, REDUCE_MIN, CV_8U);
cout << "col_min =\n" << col_min << endl;
reduce(m, row_min, 1, REDUCE_MIN, CV_8U);
cout << "row_min =\n" << row_min << endl;
reduce(m, col_max, 0, REDUCE_MAX, CV_8U);
cout << "col_max =\n" << col_max << endl;
reduce(m, row_max, 1, REDUCE_MAX, CV_8U);
cout << "row_max =\n" << row_max << endl;
/*
col_average =
[3, 4]
row_average =
[1.5;
3.5;
5.5]
col_min =
[ 1, 2]
row_min =
[ 1;
3;
5]
col_max =
[ 5, 6]
row_max =
[ 2;
4;
6]
*/
}
{
//! [example2]
// two channels
char d[] = {1,2,3,4,5,6};
Mat m(3, 1, CV_8UC2, d);
Mat col_sum_per_channel;
reduce(m, col_sum_per_channel, 0, REDUCE_SUM, CV_32F);
/*
col_sum_per_channel =
[9, 12]
*/
//! [example2]
}
return 0;
}
|