1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
|
#ifndef __OPENCV_SAMPLES_DNN_CUSTOM_LAYERS__
#define __OPENCV_SAMPLES_DNN_CUSTOM_LAYERS__
#include <opencv2/dnn.hpp>
#include <opencv2/dnn/shape_utils.hpp> // getPlane
//! [InterpLayer]
class InterpLayer : public cv::dnn::Layer
{
public:
InterpLayer(const cv::dnn::LayerParams ¶ms) : Layer(params)
{
outWidth = params.get<int>("width", 0);
outHeight = params.get<int>("height", 0);
}
static cv::Ptr<cv::dnn::Layer> create(cv::dnn::LayerParams& params)
{
return cv::Ptr<cv::dnn::Layer>(new InterpLayer(params));
}
virtual bool getMemoryShapes(const std::vector<std::vector<int> > &inputs,
const int requiredOutputs,
std::vector<std::vector<int> > &outputs,
std::vector<std::vector<int> > &internals) const CV_OVERRIDE
{
CV_UNUSED(requiredOutputs); CV_UNUSED(internals);
std::vector<int> outShape(4);
outShape[0] = inputs[0][0]; // batch size
outShape[1] = inputs[0][1]; // number of channels
outShape[2] = outHeight;
outShape[3] = outWidth;
outputs.assign(1, outShape);
return false;
}
// Implementation of this custom layer is based on https://github.com/cdmh/deeplab-public/blob/master/src/caffe/layers/interp_layer.cpp
virtual void forward(cv::InputArrayOfArrays inputs_arr,
cv::OutputArrayOfArrays outputs_arr,
cv::OutputArrayOfArrays internals_arr) CV_OVERRIDE
{
if (inputs_arr.depth() == CV_16S)
{
// In case of DNN_TARGET_OPENCL_FP16 target the following method
// converts data from FP16 to FP32 and calls this forward again.
forward_fallback(inputs_arr, outputs_arr, internals_arr);
return;
}
std::vector<cv::Mat> inputs, outputs;
inputs_arr.getMatVector(inputs);
outputs_arr.getMatVector(outputs);
cv::Mat& inp = inputs[0];
cv::Mat& out = outputs[0];
const float* inpData = (float*)inp.data;
float* outData = (float*)out.data;
const int batchSize = inp.size[0];
const int numChannels = inp.size[1];
const int inpHeight = inp.size[2];
const int inpWidth = inp.size[3];
const float rheight = (outHeight > 1) ? static_cast<float>(inpHeight - 1) / (outHeight - 1) : 0.f;
const float rwidth = (outWidth > 1) ? static_cast<float>(inpWidth - 1) / (outWidth - 1) : 0.f;
for (int h2 = 0; h2 < outHeight; ++h2)
{
const float h1r = rheight * h2;
const int h1 = static_cast<int>(h1r);
const int h1p = (h1 < inpHeight - 1) ? 1 : 0;
const float h1lambda = h1r - h1;
const float h0lambda = 1.f - h1lambda;
for (int w2 = 0; w2 < outWidth; ++w2)
{
const float w1r = rwidth * w2;
const int w1 = static_cast<int>(w1r);
const int w1p = (w1 < inpWidth - 1) ? 1 : 0;
const float w1lambda = w1r - w1;
const float w0lambda = 1.f - w1lambda;
const float* pos1 = inpData + h1 * inpWidth + w1;
float* pos2 = outData + h2 * outWidth + w2;
for (int c = 0; c < batchSize * numChannels; ++c)
{
pos2[0] =
h0lambda * (w0lambda * pos1[0] + w1lambda * pos1[w1p]) +
h1lambda * (w0lambda * pos1[h1p * inpWidth] + w1lambda * pos1[h1p * inpWidth + w1p]);
pos1 += inpWidth * inpHeight;
pos2 += outWidth * outHeight;
}
}
}
}
private:
int outWidth, outHeight;
};
//! [InterpLayer]
//! [ResizeBilinearLayer]
class ResizeBilinearLayer CV_FINAL : public cv::dnn::Layer
{
public:
ResizeBilinearLayer(const cv::dnn::LayerParams ¶ms) : Layer(params)
{
CV_Assert(!params.get<bool>("align_corners", false));
CV_Assert(!blobs.empty());
for (size_t i = 0; i < blobs.size(); ++i)
CV_Assert(blobs[i].type() == CV_32SC1);
// There are two cases of input blob: a single blob which contains output
// shape and two blobs with scaling factors.
if (blobs.size() == 1)
{
CV_Assert(blobs[0].total() == 2);
outHeight = blobs[0].at<int>(0, 0);
outWidth = blobs[0].at<int>(0, 1);
factorHeight = factorWidth = 0;
}
else
{
CV_Assert(blobs.size() == 2); CV_Assert(blobs[0].total() == 1); CV_Assert(blobs[1].total() == 1);
factorHeight = blobs[0].at<int>(0, 0);
factorWidth = blobs[1].at<int>(0, 0);
outHeight = outWidth = 0;
}
}
static cv::Ptr<cv::dnn::Layer> create(cv::dnn::LayerParams& params)
{
return cv::Ptr<cv::dnn::Layer>(new ResizeBilinearLayer(params));
}
virtual bool getMemoryShapes(const std::vector<std::vector<int> > &inputs,
const int,
std::vector<std::vector<int> > &outputs,
std::vector<std::vector<int> > &) const CV_OVERRIDE
{
std::vector<int> outShape(4);
outShape[0] = inputs[0][0]; // batch size
outShape[1] = inputs[0][1]; // number of channels
outShape[2] = outHeight != 0 ? outHeight : (inputs[0][2] * factorHeight);
outShape[3] = outWidth != 0 ? outWidth : (inputs[0][3] * factorWidth);
outputs.assign(1, outShape);
return false;
}
virtual void finalize(cv::InputArrayOfArrays, cv::OutputArrayOfArrays outputs_arr) CV_OVERRIDE
{
std::vector<cv::Mat> outputs;
outputs_arr.getMatVector(outputs);
if (!outWidth && !outHeight)
{
outHeight = outputs[0].size[2];
outWidth = outputs[0].size[3];
}
}
// This implementation is based on a reference implementation from
// https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/lite/kernels/internal/reference/reference_ops.h
virtual void forward(cv::InputArrayOfArrays inputs_arr,
cv::OutputArrayOfArrays outputs_arr,
cv::OutputArrayOfArrays internals_arr) CV_OVERRIDE
{
if (inputs_arr.depth() == CV_16S)
{
// In case of DNN_TARGET_OPENCL_FP16 target the following method
// converts data from FP16 to FP32 and calls this forward again.
forward_fallback(inputs_arr, outputs_arr, internals_arr);
return;
}
std::vector<cv::Mat> inputs, outputs;
inputs_arr.getMatVector(inputs);
outputs_arr.getMatVector(outputs);
cv::Mat& inp = inputs[0];
cv::Mat& out = outputs[0];
const float* inpData = (float*)inp.data;
float* outData = (float*)out.data;
const int batchSize = inp.size[0];
const int numChannels = inp.size[1];
const int inpHeight = inp.size[2];
const int inpWidth = inp.size[3];
float heightScale = static_cast<float>(inpHeight) / outHeight;
float widthScale = static_cast<float>(inpWidth) / outWidth;
for (int b = 0; b < batchSize; ++b)
{
for (int y = 0; y < outHeight; ++y)
{
float input_y = y * heightScale;
int y0 = static_cast<int>(std::floor(input_y));
int y1 = std::min(y0 + 1, inpHeight - 1);
for (int x = 0; x < outWidth; ++x)
{
float input_x = x * widthScale;
int x0 = static_cast<int>(std::floor(input_x));
int x1 = std::min(x0 + 1, inpWidth - 1);
for (int c = 0; c < numChannels; ++c)
{
float interpolation =
inpData[offset(inp.size, c, x0, y0, b)] * (1 - (input_y - y0)) * (1 - (input_x - x0)) +
inpData[offset(inp.size, c, x0, y1, b)] * (input_y - y0) * (1 - (input_x - x0)) +
inpData[offset(inp.size, c, x1, y0, b)] * (1 - (input_y - y0)) * (input_x - x0) +
inpData[offset(inp.size, c, x1, y1, b)] * (input_y - y0) * (input_x - x0);
outData[offset(out.size, c, x, y, b)] = interpolation;
}
}
}
}
}
private:
static inline int offset(const cv::MatSize& size, int c, int x, int y, int b)
{
return x + size[3] * (y + size[2] * (c + size[1] * b));
}
int outWidth, outHeight, factorWidth, factorHeight;
};
//! [ResizeBilinearLayer]
//
// The following code is used only to generate tutorials documentation.
//
//! [A custom layer interface]
class MyLayer : public cv::dnn::Layer
{
public:
//! [MyLayer::MyLayer]
MyLayer(const cv::dnn::LayerParams ¶ms);
//! [MyLayer::MyLayer]
//! [MyLayer::create]
static cv::Ptr<cv::dnn::Layer> create(cv::dnn::LayerParams& params);
//! [MyLayer::create]
//! [MyLayer::getMemoryShapes]
virtual bool getMemoryShapes(const std::vector<std::vector<int> > &inputs,
const int requiredOutputs,
std::vector<std::vector<int> > &outputs,
std::vector<std::vector<int> > &internals) const CV_OVERRIDE;
//! [MyLayer::getMemoryShapes]
//! [MyLayer::forward]
virtual void forward(cv::InputArrayOfArrays inputs,
cv::OutputArrayOfArrays outputs,
cv::OutputArrayOfArrays internals) CV_OVERRIDE;
//! [MyLayer::forward]
//! [MyLayer::finalize]
virtual void finalize(cv::InputArrayOfArrays inputs,
cv::OutputArrayOfArrays outputs) CV_OVERRIDE;
//! [MyLayer::finalize]
};
//! [A custom layer interface]
//! [Register a custom layer]
#include <opencv2/dnn/layer.details.hpp> // CV_DNN_REGISTER_LAYER_CLASS
static inline void loadNet()
{
CV_DNN_REGISTER_LAYER_CLASS(Interp, InterpLayer);
// ...
//! [Register a custom layer]
//! [Register InterpLayer]
CV_DNN_REGISTER_LAYER_CLASS(Interp, InterpLayer);
cv::dnn::Net caffeNet = cv::dnn::readNet("/path/to/config.prototxt", "/path/to/weights.caffemodel");
//! [Register InterpLayer]
//! [Register ResizeBilinearLayer]
CV_DNN_REGISTER_LAYER_CLASS(ResizeBilinear, ResizeBilinearLayer);
cv::dnn::Net tfNet = cv::dnn::readNet("/path/to/graph.pb");
//! [Register ResizeBilinearLayer]
if (false) loadNet(); // To prevent unused function warning.
}
#endif // __OPENCV_SAMPLES_DNN_CUSTOM_LAYERS__
|